Molecular structure, vibrational frequency and infrared intensity of UF6 are investigated by using the revised Perdew Burke-Enzerhof function with the triple-zeta polarized basis set. The calculation results are in go...Molecular structure, vibrational frequency and infrared intensity of UF6 are investigated by using the revised Perdew Burke-Enzerhof function with the triple-zeta polarized basis set. The calculation results are in good agreement with the experimental values and indicate the existence of a stable U2F6 molecule with a multiple bonded U2 unit. The calculation results also predict that the D3d symmetry of U2F6 is more stable than D3h. The optimized geometries, vibrational frequencies, and infrared intensities are also reported for U2F6 molecules in D3d symmetry. In addition, the isotopic shift of vibrational frequencies of the two molecules under isotopic substitution of uranium atom are also investigated with the same method. The U2F6 molecule is predicted to be better than UF6 for laser uranic isotope separation.展开更多
Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction...Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.展开更多
The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries, the vibrational frequencies, the force constants and the dissociation energies for the ground states of...The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries, the vibrational frequencies, the force constants and the dissociation energies for the ground states of all isotopic water molecules under the dipole electric fields from -0.05 a.u. to 0.05 a.u. are calculated using B3P86/6-311++G(3df,3pf). The results show that when the dipole electric fields change from -0.05 a.u. to 0.05 a.u., the bond length of H-O increases whereas the bond angle of H-O H decreases because of the charge transfer induced by the applied dipole electric field. The vibrational frequencies and the force constants of isotopic water molecules change under the influence of the strong external torque. The dissociation energies increase when the dipole electric fields change from -0.05 a.u. to 0.05 a.u. and the increased dissociation energies are in the order of H2O, HDO, HTO, D2O, DTO, and T2O under the same external electric fields.展开更多
Geometric, electronic and vibrational properties of the most stable and energetically favourable configurations of indium oxide clusters InmOn (1 ≤m, n ≤ 4) are investigated using density functional theory. The lo...Geometric, electronic and vibrational properties of the most stable and energetically favourable configurations of indium oxide clusters InmOn (1 ≤m, n ≤ 4) are investigated using density functional theory. The lowest energy geometries prefer the planar arrangement of the constituent atoms with a trend to maximize the number of ionic In-O bonds. Due to the charge transfer from In to O atoms, the electrostatic repulsion occurs between the atoms with the same kind of charge. The minimization of electrostatic repulsion and the maximization of In O bond number compete between each other and determine the location of the isometric total energy. The most stable linear In-O-In-O structure of In2O2 cluster is attributed to the reduced electrostatic repulsive energy at the expense of In-O bond number, while the lowest energy rhombus-like structure of In2O3 cluster reflects the maximized number of In O bonds. Furthermore, the vibrational frequencies of the lowest energy clusters are calculated and compared with the available experimental results. The energy gap and the charge density distribution for clusters with varying oxygen/indium ratio are also discussed.展开更多
The molecular structures,electron affinities,vibrational frequencies and IR intensities of the SF5OX/SF5OX-(X=F,Cl,Br)species have been determined by four different density functional theory(DFT)methods(B3LYP,BHL...The molecular structures,electron affinities,vibrational frequencies and IR intensities of the SF5OX/SF5OX-(X=F,Cl,Br)species have been determined by four different density functional theory(DFT)methods(B3LYP,BHLYP,BP86,BLYP)in conjunction with DZP++ basis set.The BHLYP method predicts the best geometry parameters.The adiabatic electron affinities(EAad)predicted by the B3LYP/DZP++ method are 4.36 eV(SF5OF),4.13 eV(SF5OCl),4.12 eV(SF5OBr),respectively.Large electron affinity implies the corresponding anions are stable.The total intensities in the near IR "window" of the anions SF5OX-(X=F,Cl,Br)at B3LYP level are 1 602 km/mol(SF5OF-),1 868 km/mol(SF5OCl-)and 1 916 km/mol(SF5OBr-),respectively,larger than those of the corresponding neutrals.It suggests that SF5OX/SF5OX-(X=F,Cl,Br)may be used to "warm" Mars.展开更多
When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We deve...When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We developed a supercritical CO_(2)true triaxial pneumatic rock-breaking experimental system,and conducted laboratory and field tests of dry ice powder pneumatic rock-breaking.The characteristics of the blast-induced vibration velocity waveform and the evolution of the vibration velocity and frequency with the focal distance were analyzed and discussed.The fracturing mechanism of dry ice powder pneumatic rock breaking is studied.The research results show that:(1)The vibration velocity induced by dry ice powder pneumatic rock breaking decays as a power function with the increase of the focal distance;(2)The vibration frequency caused by dry ice powder pneumatic rock breaking is mainly distributed in 1–120 Hz.Due to the dispersion effect,the dominant frequency of 10–30 Hz appears abnormally attenuated;(3)The traditional CO_(2)phase change fracturing energy calculation formula is also applicable to dry ice pneumatic rock breaking technology,and the trinitrotoluene(TNT)equivalent of fracturing energy is applicable to the Sadovsky formula;(4)Dry ice powder pneumatic rock breaking is shock wave and highenergy gas acting together to fracture rock,which can be divided into three stages,among which the gas wedge action of high-energy gas plays a dominant role in rock mass damage.展开更多
The molecular structures and the vibrational frequencies of uranium hexahalides UX6 (X=F, Cl, Br and I) molecules are investigated by using local density approximation (LDA) and generalised gradient approximation ...The molecular structures and the vibrational frequencies of uranium hexahalides UX6 (X=F, Cl, Br and I) molecules are investigated by using local density approximation (LDA) and generalised gradient approximation (GGA) functions (BP, BLYP and RPBE) in combination with two different relativistic methods (scalar and scalar+spin-orbit relativistic effects). The calculated results show that the differences are trivial between scalar and scalar+spin-orbit relativistic methods. The vibrational frequencies are also compared with existing experimental values, and overall, the RPBE approach gives the smallest error. The bond dissociation energies (BDEs) of UX6 are computed by using the RPBE function, thereby obtaining exact vibrational frequencies. In addition, the calculated magnitudes of the spin orbit effect on the BDE of UX6 (X=F, Cl, Br, and I) are found to be approximately -0.3198, 0.3218, -0.3609 and -0.4415 eV, respectively.展开更多
The laws that natural frequencies of rectangular plate with a cutout will change with size and position of cutout are obtained by analytic, numerical and experimental methods.
We investigate the structural, electronic and adsorption properties of one single CO molecule adsorbed on RhN (N = 2-19) clusters, using the density-functional theory in the spin-polarized generalized gradient appro...We investigate the structural, electronic and adsorption properties of one single CO molecule adsorbed on RhN (N = 2-19) clusters, using the density-functional theory in the spin-polarized generalized gradient approximation. It is found that the structural growth model of the RhN clusters transforms from double layers (N = 12-16) to three layers (N : 17-19). Three different adsorption types are the atop site adsorption for N = 6, 8, 9, 11, 12, the bridge site adsorption for N : 2-5, 7, 10, 13-15, 17 and the face adsorption for N = 16, 18, 19. The adsorption abilities of RhN clusters are related to C-O bond length, vibrational frequency, adsorption energy and the charge transfer between CO and Rh clusters as well as the electronic density of state. With the increase of Rh cluster size, the adsorption energy of CO adsorbed on RhN clusters tends to be 2.2 eV-2.3 eV, which is 0.2 eV-0.3 eV larger than the theoretical value (about 2.0 eV) of CO molecule adsorption on clean Rh (111) surface.展开更多
基金Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2009JM1007)
文摘Molecular structure, vibrational frequency and infrared intensity of UF6 are investigated by using the revised Perdew Burke-Enzerhof function with the triple-zeta polarized basis set. The calculation results are in good agreement with the experimental values and indicate the existence of a stable U2F6 molecule with a multiple bonded U2 unit. The calculation results also predict that the D3d symmetry of U2F6 is more stable than D3h. The optimized geometries, vibrational frequencies, and infrared intensities are also reported for U2F6 molecules in D3d symmetry. In addition, the isotopic shift of vibrational frequencies of the two molecules under isotopic substitution of uranium atom are also investigated with the same method. The U2F6 molecule is predicted to be better than UF6 for laser uranic isotope separation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52002318 and 22103061)。
文摘Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022)
文摘The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries, the vibrational frequencies, the force constants and the dissociation energies for the ground states of all isotopic water molecules under the dipole electric fields from -0.05 a.u. to 0.05 a.u. are calculated using B3P86/6-311++G(3df,3pf). The results show that when the dipole electric fields change from -0.05 a.u. to 0.05 a.u., the bond length of H-O increases whereas the bond angle of H-O H decreases because of the charge transfer induced by the applied dipole electric field. The vibrational frequencies and the force constants of isotopic water molecules change under the influence of the strong external torque. The dissociation energies increase when the dipole electric fields change from -0.05 a.u. to 0.05 a.u. and the increased dissociation energies are in the order of H2O, HDO, HTO, D2O, DTO, and T2O under the same external electric fields.
文摘Geometric, electronic and vibrational properties of the most stable and energetically favourable configurations of indium oxide clusters InmOn (1 ≤m, n ≤ 4) are investigated using density functional theory. The lowest energy geometries prefer the planar arrangement of the constituent atoms with a trend to maximize the number of ionic In-O bonds. Due to the charge transfer from In to O atoms, the electrostatic repulsion occurs between the atoms with the same kind of charge. The minimization of electrostatic repulsion and the maximization of In O bond number compete between each other and determine the location of the isometric total energy. The most stable linear In-O-In-O structure of In2O2 cluster is attributed to the reduced electrostatic repulsive energy at the expense of In-O bond number, while the lowest energy rhombus-like structure of In2O3 cluster reflects the maximized number of In O bonds. Furthermore, the vibrational frequencies of the lowest energy clusters are calculated and compared with the available experimental results. The energy gap and the charge density distribution for clusters with varying oxygen/indium ratio are also discussed.
基金Sponsored by the National Natural Science Foundation of China(20773014)the "111" Project of China(B07012)
文摘The molecular structures,electron affinities,vibrational frequencies and IR intensities of the SF5OX/SF5OX-(X=F,Cl,Br)species have been determined by four different density functional theory(DFT)methods(B3LYP,BHLYP,BP86,BLYP)in conjunction with DZP++ basis set.The BHLYP method predicts the best geometry parameters.The adiabatic electron affinities(EAad)predicted by the B3LYP/DZP++ method are 4.36 eV(SF5OF),4.13 eV(SF5OCl),4.12 eV(SF5OBr),respectively.Large electron affinity implies the corresponding anions are stable.The total intensities in the near IR "window" of the anions SF5OX-(X=F,Cl,Br)at B3LYP level are 1 602 km/mol(SF5OF-),1 868 km/mol(SF5OCl-)and 1 916 km/mol(SF5OBr-),respectively,larger than those of the corresponding neutrals.It suggests that SF5OX/SF5OX-(X=F,Cl,Br)may be used to "warm" Mars.
基金supported by the State Key Laboratory Open Fund(No.HKLBEF202004)the Natural Science Foundation of Jiangsu Province(No.BK20201313)+2 种基金the Key Program of National Natural Science Foundation of China(No.51934007)the Major Scientific and Technological Innovation Program in Shandong Province(No.2019JZZY020505)the National Key Research and Development Program of China(No.2022YFC3004700)。
文摘When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We developed a supercritical CO_(2)true triaxial pneumatic rock-breaking experimental system,and conducted laboratory and field tests of dry ice powder pneumatic rock-breaking.The characteristics of the blast-induced vibration velocity waveform and the evolution of the vibration velocity and frequency with the focal distance were analyzed and discussed.The fracturing mechanism of dry ice powder pneumatic rock breaking is studied.The research results show that:(1)The vibration velocity induced by dry ice powder pneumatic rock breaking decays as a power function with the increase of the focal distance;(2)The vibration frequency caused by dry ice powder pneumatic rock breaking is mainly distributed in 1–120 Hz.Due to the dispersion effect,the dominant frequency of 10–30 Hz appears abnormally attenuated;(3)The traditional CO_(2)phase change fracturing energy calculation formula is also applicable to dry ice pneumatic rock breaking technology,and the trinitrotoluene(TNT)equivalent of fracturing energy is applicable to the Sadovsky formula;(4)Dry ice powder pneumatic rock breaking is shock wave and highenergy gas acting together to fracture rock,which can be divided into three stages,among which the gas wedge action of high-energy gas plays a dominant role in rock mass damage.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60278020)
文摘The molecular structures and the vibrational frequencies of uranium hexahalides UX6 (X=F, Cl, Br and I) molecules are investigated by using local density approximation (LDA) and generalised gradient approximation (GGA) functions (BP, BLYP and RPBE) in combination with two different relativistic methods (scalar and scalar+spin-orbit relativistic effects). The calculated results show that the differences are trivial between scalar and scalar+spin-orbit relativistic methods. The vibrational frequencies are also compared with existing experimental values, and overall, the RPBE approach gives the smallest error. The bond dissociation energies (BDEs) of UX6 are computed by using the RPBE function, thereby obtaining exact vibrational frequencies. In addition, the calculated magnitudes of the spin orbit effect on the BDE of UX6 (X=F, Cl, Br, and I) are found to be approximately -0.3198, 0.3218, -0.3609 and -0.4415 eV, respectively.
文摘The laws that natural frequencies of rectangular plate with a cutout will change with size and position of cutout are obtained by analytic, numerical and experimental methods.
基金supported by the National Basic Research Program of China (Grant No. 2011CB606401)
文摘We investigate the structural, electronic and adsorption properties of one single CO molecule adsorbed on RhN (N = 2-19) clusters, using the density-functional theory in the spin-polarized generalized gradient approximation. It is found that the structural growth model of the RhN clusters transforms from double layers (N = 12-16) to three layers (N : 17-19). Three different adsorption types are the atop site adsorption for N = 6, 8, 9, 11, 12, the bridge site adsorption for N : 2-5, 7, 10, 13-15, 17 and the face adsorption for N = 16, 18, 19. The adsorption abilities of RhN clusters are related to C-O bond length, vibrational frequency, adsorption energy and the charge transfer between CO and Rh clusters as well as the electronic density of state. With the increase of Rh cluster size, the adsorption energy of CO adsorbed on RhN clusters tends to be 2.2 eV-2.3 eV, which is 0.2 eV-0.3 eV larger than the theoretical value (about 2.0 eV) of CO molecule adsorption on clean Rh (111) surface.