Identifying potential hazards is crucial for maintaining the structural stability of opencast mining area.To address the limitations of irregular structure and sparse microseismic events in opencast mining monitoring,...Identifying potential hazards is crucial for maintaining the structural stability of opencast mining area.To address the limitations of irregular structure and sparse microseismic events in opencast mining monitoring,this paper proposes an active-source imaging method for identifying potential hazards precisely based on velocity structure.This method innovatively divides the irregular structure into unstructured grids and introduces a damping and smoothing regularization operator into the inversion process,mitigating the ill-posedness caused by the sparse distribution of events and rays.Numerical and laboratory experiments were conducted to verify the reliability and effectiveness of the proposed method.The results demonstrate the competitive performance of the method in identifying hazard areas of varying sizes and numbers.The proposed method shows potential for meeting hazard identification requirements in the complex opencast mining structure.Furthermore,field experiments were conducted on an rare earth mine slope.It confirms that the proposed method provides a more concrete and intuitive scheme for stability monitoring for the microseismic monitoring system.This paper not only demonstrates the application of acoustic structure velocity imaging technology in detecting unstructured potential hazard regions but also provides valuable insights into the construction and maintenance of stable opencast mining area.展开更多
基金Project(2021YFC2900500)supported by the National Key Research and Development Program of China。
文摘Identifying potential hazards is crucial for maintaining the structural stability of opencast mining area.To address the limitations of irregular structure and sparse microseismic events in opencast mining monitoring,this paper proposes an active-source imaging method for identifying potential hazards precisely based on velocity structure.This method innovatively divides the irregular structure into unstructured grids and introduces a damping and smoothing regularization operator into the inversion process,mitigating the ill-posedness caused by the sparse distribution of events and rays.Numerical and laboratory experiments were conducted to verify the reliability and effectiveness of the proposed method.The results demonstrate the competitive performance of the method in identifying hazard areas of varying sizes and numbers.The proposed method shows potential for meeting hazard identification requirements in the complex opencast mining structure.Furthermore,field experiments were conducted on an rare earth mine slope.It confirms that the proposed method provides a more concrete and intuitive scheme for stability monitoring for the microseismic monitoring system.This paper not only demonstrates the application of acoustic structure velocity imaging technology in detecting unstructured potential hazard regions but also provides valuable insights into the construction and maintenance of stable opencast mining area.