Based on the multiplicity results of Benci and Fortunato [4], we consider some elliptic systems with strongly indefinite quadratic part, and establish the existence of infinitely many nontrivial solutions in a suitabl...Based on the multiplicity results of Benci and Fortunato [4], we consider some elliptic systems with strongly indefinite quadratic part, and establish the existence of infinitely many nontrivial solutions in a suitable family of products of fractional Sobolev spaces.展开更多
This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ...This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ is the spectrum of the operator -△-μI/|x|2 with zero Dirichlet boundary condition, 0 <μ< μ-,μ-=(N-2)2/4, f(x,u)is an asymmetric lower order perturbation of |u|2* -1 at infinity. Using the dual variational methods, the existence of nontrivial solutions is proved.展开更多
文摘Based on the multiplicity results of Benci and Fortunato [4], we consider some elliptic systems with strongly indefinite quadratic part, and establish the existence of infinitely many nontrivial solutions in a suitable family of products of fractional Sobolev spaces.
文摘This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ is the spectrum of the operator -△-μI/|x|2 with zero Dirichlet boundary condition, 0 <μ< μ-,μ-=(N-2)2/4, f(x,u)is an asymmetric lower order perturbation of |u|2* -1 at infinity. Using the dual variational methods, the existence of nontrivial solutions is proved.