The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of R...The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to improve its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in indoor environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs.展开更多
In order to enhance the robustness and contrast in the minimum variance(MV) beamformer, adaptive diagonal loading method was proposed. The conventional diagonal loading technique has already been used in the MV beamfo...In order to enhance the robustness and contrast in the minimum variance(MV) beamformer, adaptive diagonal loading method was proposed. The conventional diagonal loading technique has already been used in the MV beamformer, but has the drawback that its level is specified by predefined parameter and without consideration of input-data. To alleviate this problem, the level of diagonal loading was computed appropriately and automatically from the given data by shrinkage method in the proposed adaptive diagonal loaded beamformer. The performance of the proposed beamformer was tested on the simulated point target and cyst phantom was obtained using Field II. In the point target simulation, it is shown that the proposed method has higher lateral resolution than the conventional delay-and-sum beamformer and could be more robust in estimating the amplitude peak than the MV beamformer when acoustic velocity error exists. In the cyst phantom simulation, the proposed beamformer has shown that it achieves an improvement in contrast ratio and without distorting the edges of cyst.展开更多
Background:Photosynthate partitioning and within-plant boll distribution play an important role in yield formation of cotton;however,if and how they interact to mediate yield remains unclear.The objective of this stud...Background:Photosynthate partitioning and within-plant boll distribution play an important role in yield formation of cotton;however,if and how they interact to mediate yield remains unclear.The objective of this study was to investigate the genotypic variance in photosynthate partitioning and within-plant boll distribution,with a focus on their interactions with regard to yield and yield components.A field experiment was conducted in the Yellow River region in China in 2017 and 2018 using a randomized complete block design with three replicates.Photosynthate partitioning of three commercial cultivars(DP 99 B,Lumianyan 21 and Jimian 169),varying in yield potential,to different organs(including bolls)at early flowering,peak flowering,and peak boll-setting stages,as well as withinplant boll distribution at harvest,and their effects on yield formation were examined.Results:Lint yield of Jimian 169 was the highest,followed by Lumianyan 21 and DP 99 B.Similar differences were observed in the number of inner bolls and boll weight among the three cultivars.J169 partitioned significantly more photosynthate to the fruit and fiber than Lumianyan 21 and DP 99 B and allocated over 80%of assimilates to the inner bolls.Additionally,Lumianyan 21 allocated a higher proportion of photosynthate to bolls and fiber,with12.5%–17.6%more assimilates observed in the inner bolls,than DP 99 B.Conclusions:Genotypic variance in lint yield can be attributed to differences in the number of inner bolls and boll weight,which are affected by photosynthate partitioning.Therefore,the partitioning of photosynthate to fiber and inner bolls can be used as an important reference for cotton breeding and cultivation.展开更多
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ...Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.展开更多
In the recent research of network sampling, some sampling concepts are misunderstood, and the variance of subnets is not taken into account. We propose the correct definition of the sample and sampling rate in network...In the recent research of network sampling, some sampling concepts are misunderstood, and the variance of subnets is not taken into account. We propose the correct definition of the sample and sampling rate in network sampling, as well as the formula for calculating the variance of subnets. Then, three commonly used sampling strategies are applied to databases of the connecting nearest-neighbor(CNN) model, random network and small-world network to explore the variance in network sampling. As proved by the results, snowball sampling obtains the most variance of subnets, but does well in capturing the network structure. The variance of networks sampled by the hub and random strategy are much smaller. The hub strategy performs well in reflecting the property of the whole network, while random sampling obtains more accurate results in evaluating clustering coefficient.展开更多
Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud de...Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud detection from the visual band of a satellite image is developed. Firstly, we consider the differences between the cloud and ground including high grey level, good continuity of grey level, area of cloud region, and the variance of local fractal dimension (VLFD) of the cloud region. A single cloud region detection method is proposed. Secondly, by introducing a reference satellite image and by comparing the variance in the dimensions corresponding to the reference and the tested images, a method that detects multiple cloud regions and determines whether or not the cloud exists in an image is described. By using several Ikonos images, the performance of the proposed method is demonstrated.展开更多
We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed....We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed. After two Riccati equations are solved, the filter can be obtained directly, and the following three performance requirements are simultaneously satisfied: The filtering process is asymptotically stable; the steadystate variance of the estimation error of each state is not more than the individual prespecified upper bound; the transfer function from exogenous noise inputs to error state outputs meets the prespecified H ∞ norm upper bound constraint. A numerical example is provided to demonstrate the flexibility of the proposed design approach.展开更多
In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on tempo...In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background.展开更多
基金supported by the National Natural Science Foundation of China(6120200461472192)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to improve its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in indoor environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs.
基金Project(2013GZX0147-3)supported by the Science and Technology Pillar Program of Sichuan Province,China
文摘In order to enhance the robustness and contrast in the minimum variance(MV) beamformer, adaptive diagonal loading method was proposed. The conventional diagonal loading technique has already been used in the MV beamformer, but has the drawback that its level is specified by predefined parameter and without consideration of input-data. To alleviate this problem, the level of diagonal loading was computed appropriately and automatically from the given data by shrinkage method in the proposed adaptive diagonal loaded beamformer. The performance of the proposed beamformer was tested on the simulated point target and cyst phantom was obtained using Field II. In the point target simulation, it is shown that the proposed method has higher lateral resolution than the conventional delay-and-sum beamformer and could be more robust in estimating the amplitude peak than the MV beamformer when acoustic velocity error exists. In the cyst phantom simulation, the proposed beamformer has shown that it achieves an improvement in contrast ratio and without distorting the edges of cyst.
基金supported by the Modern Agro-industry Technology Research System,China(SDAIT-03-03/05)the Natural Science Foundation of China(31601253)the Natural Science Foundation of Shandong Province,China(ZR2016CQ20)。
文摘Background:Photosynthate partitioning and within-plant boll distribution play an important role in yield formation of cotton;however,if and how they interact to mediate yield remains unclear.The objective of this study was to investigate the genotypic variance in photosynthate partitioning and within-plant boll distribution,with a focus on their interactions with regard to yield and yield components.A field experiment was conducted in the Yellow River region in China in 2017 and 2018 using a randomized complete block design with three replicates.Photosynthate partitioning of three commercial cultivars(DP 99 B,Lumianyan 21 and Jimian 169),varying in yield potential,to different organs(including bolls)at early flowering,peak flowering,and peak boll-setting stages,as well as withinplant boll distribution at harvest,and their effects on yield formation were examined.Results:Lint yield of Jimian 169 was the highest,followed by Lumianyan 21 and DP 99 B.Similar differences were observed in the number of inner bolls and boll weight among the three cultivars.J169 partitioned significantly more photosynthate to the fruit and fiber than Lumianyan 21 and DP 99 B and allocated over 80%of assimilates to the inner bolls.Additionally,Lumianyan 21 allocated a higher proportion of photosynthate to bolls and fiber,with12.5%–17.6%more assimilates observed in the inner bolls,than DP 99 B.Conclusions:Genotypic variance in lint yield can be attributed to differences in the number of inner bolls and boll weight,which are affected by photosynthate partitioning.Therefore,the partitioning of photosynthate to fiber and inner bolls can be used as an important reference for cotton breeding and cultivation.
基金Supported by National Natural Science Foundation of China (60634030 60702066) Aerospace Science Foundation (20090853013) Doctoral Program Foundation of China(20060699032)
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.11574250).
文摘Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.
基金supported by the Basic Research Fund of Beijing Institute of Technology(20120642008)
文摘In the recent research of network sampling, some sampling concepts are misunderstood, and the variance of subnets is not taken into account. We propose the correct definition of the sample and sampling rate in network sampling, as well as the formula for calculating the variance of subnets. Then, three commonly used sampling strategies are applied to databases of the connecting nearest-neighbor(CNN) model, random network and small-world network to explore the variance in network sampling. As proved by the results, snowball sampling obtains the most variance of subnets, but does well in capturing the network structure. The variance of networks sampled by the hub and random strategy are much smaller. The hub strategy performs well in reflecting the property of the whole network, while random sampling obtains more accurate results in evaluating clustering coefficient.
基金supported by the National Natural Science Foundation of China(61702385)the Key Projects of National Social Science Foundation of China(11&ZD189)
文摘Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud detection from the visual band of a satellite image is developed. Firstly, we consider the differences between the cloud and ground including high grey level, good continuity of grey level, area of cloud region, and the variance of local fractal dimension (VLFD) of the cloud region. A single cloud region detection method is proposed. Secondly, by introducing a reference satellite image and by comparing the variance in the dimensions corresponding to the reference and the tested images, a method that detects multiple cloud regions and determines whether or not the cloud exists in an image is described. By using several Ikonos images, the performance of the proposed method is demonstrated.
文摘We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed. After two Riccati equations are solved, the filter can be obtained directly, and the following three performance requirements are simultaneously satisfied: The filtering process is asymptotically stable; the steadystate variance of the estimation error of each state is not more than the individual prespecified upper bound; the transfer function from exogenous noise inputs to error state outputs meets the prespecified H ∞ norm upper bound constraint. A numerical example is provided to demonstrate the flexibility of the proposed design approach.
基金partially supported by the National Natural Science Foundation of China (Grant Nos.71671104,11971301)the Project of Humanities Social Sciences of Research of the Ministry of Education,China (Grant No.16YJA910003)。
基金National Natural Science Foundation of China(61774120)
文摘In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background.
基金Supported by National Natural Science Foundation of China (60874063) and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)