论文研究了自适应最小均方误差(Least Mean Squares,LMS)滤波算法的步长选取问题。在分析现有算法的基础上,通过构造步长与误差信号之间的非线性函数,提出一种新的变步长LMS算法。新算法采用误差信号的自相关估计值控制步长,而不是直接...论文研究了自适应最小均方误差(Least Mean Squares,LMS)滤波算法的步长选取问题。在分析现有算法的基础上,通过构造步长与误差信号之间的非线性函数,提出一种新的变步长LMS算法。新算法采用误差信号的自相关估计值控制步长,而不是直接利用瞬时误差控制步长,避免了噪声干扰,降低了稳态失调,可工作于低信噪比环境。同时新算法步长控制无记忆效应,提高了收敛速度。仿真表明,新算法的稳态失调和收敛速度均优于现有变步长LMS算法。展开更多
针对固定步长LMS(Least Mean Square)算法(FXSSLMS)不能同时满足快速收敛和小稳态失调误差的问题,该文提出了迭代变步长LMS算法(IVSSLMS)。与已有的变步长LMS算法(VSSLMS)不同,该算法的步长因子不再是由输出误差信号控制,而是建立了与...针对固定步长LMS(Least Mean Square)算法(FXSSLMS)不能同时满足快速收敛和小稳态失调误差的问题,该文提出了迭代变步长LMS算法(IVSSLMS)。与已有的变步长LMS算法(VSSLMS)不同,该算法的步长因子不再是由输出误差信号控制,而是建立了与迭代时间的改进Logistic函数非线性关系,克服了定步长算法收敛慢及已有变步长算法抗噪声干扰能力差的问题。最后从理论上分析了算法的性能,给出了其参数取值方法。理论分析和仿真均表明,所提算法能够在快速收敛情况下获得小的稳态失调误差,在有色噪声干扰下稳态失调误差比已有算法降低了约7 d B。展开更多
提出一种改进的变步长LMS(Least Mean Square)算法,该算法在步长参数μ与误差信号e(n)之间建立了一种非线性函数关系,并且分析了参数α,β的取值原则及对算法收敛性能的影响。该关系具有在误差e(n)接近零处缓慢变化的优点,克服了s函数...提出一种改进的变步长LMS(Least Mean Square)算法,该算法在步长参数μ与误差信号e(n)之间建立了一种非线性函数关系,并且分析了参数α,β的取值原则及对算法收敛性能的影响。该关系具有在误差e(n)接近零处缓慢变化的优点,克服了s函数变步长LMS算法在自适应稳态阶段μ(n)取值偏大的缺陷。理论分析和计算机仿真结果表明,改进算法的收敛速度和稳态误差的性能指标都有较大的提高。展开更多
文摘论文研究了自适应最小均方误差(Least Mean Squares,LMS)滤波算法的步长选取问题。在分析现有算法的基础上,通过构造步长与误差信号之间的非线性函数,提出一种新的变步长LMS算法。新算法采用误差信号的自相关估计值控制步长,而不是直接利用瞬时误差控制步长,避免了噪声干扰,降低了稳态失调,可工作于低信噪比环境。同时新算法步长控制无记忆效应,提高了收敛速度。仿真表明,新算法的稳态失调和收敛速度均优于现有变步长LMS算法。
文摘针对固定步长LMS(Least Mean Square)算法(FXSSLMS)不能同时满足快速收敛和小稳态失调误差的问题,该文提出了迭代变步长LMS算法(IVSSLMS)。与已有的变步长LMS算法(VSSLMS)不同,该算法的步长因子不再是由输出误差信号控制,而是建立了与迭代时间的改进Logistic函数非线性关系,克服了定步长算法收敛慢及已有变步长算法抗噪声干扰能力差的问题。最后从理论上分析了算法的性能,给出了其参数取值方法。理论分析和仿真均表明,所提算法能够在快速收敛情况下获得小的稳态失调误差,在有色噪声干扰下稳态失调误差比已有算法降低了约7 d B。
文摘提出一种改进的变步长LMS(Least Mean Square)算法,该算法在步长参数μ与误差信号e(n)之间建立了一种非线性函数关系,并且分析了参数α,β的取值原则及对算法收敛性能的影响。该关系具有在误差e(n)接近零处缓慢变化的优点,克服了s函数变步长LMS算法在自适应稳态阶段μ(n)取值偏大的缺陷。理论分析和计算机仿真结果表明,改进算法的收敛速度和稳态误差的性能指标都有较大的提高。