为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属...为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属性赋值方法对采样点赋值,从而将物体距离视点的距离与物体距离光源的距离有效地结合起来。最后,采用基于空间跳跃的加速技术显示背景体素。实验结果表明:对于512×512×482×2 Byte大小的体数据在减少至原来大小2/3的情况下,在普通微机上能够达到2.5 frame/s的清晰绘制。本算法能够实现一般大小体数据场的实时绘制,而且组织器官显示清晰,符合人的视觉特征。展开更多
With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting...With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.展开更多
The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure,...The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure, hardness are analyzed, and the stability of gradient distribution of composition, macrostructure and hardness along the axial direction of the ingot is also studied. The results show that diffe rent composition profiles can be achieved by adjusting the processing parameters; the volume fraction of inner alloy in the ingot can be increased by enlarging the throttle bore diameter and elevating the temperature of inner melt; quasi steady solidification can be realized within 20 s during cast processing, and consistent quality ingot is obtained by controlling the casting speed and liquid height of inner melt.展开更多
A Lagrangian relaxation(LR) approach was presented which is with machine capacity relaxation and operation precedence relaxation for solving a flexible job shop(FJS) scheduling problem from the steelmaking-refining-co...A Lagrangian relaxation(LR) approach was presented which is with machine capacity relaxation and operation precedence relaxation for solving a flexible job shop(FJS) scheduling problem from the steelmaking-refining-continuous casting process. Unlike the full optimization of LR problems in traditional LR approaches, the machine capacity relaxation is optimized asymptotically, while the precedence relaxation is optimized approximately due to the NP-hard nature of its LR problem. Because the standard subgradient algorithm(SSA) cannot solve the Lagrangian dual(LD) problem within the partial optimization of LR problem, an effective deflected-conditional approximate subgradient level algorithm(DCASLA) was developed, named as Lagrangian relaxation level approach. The efficiency of the DCASLA is enhanced by a deflected-conditional epsilon-subgradient to weaken the possible zigzagging phenomena. Computational results and comparisons show that the proposed methods improve significantly the efficiency of the LR approach and the DCASLA adopting capacity relaxation strategy performs best among eight methods in terms of solution quality and running time.展开更多
In order to use the cast method to replace forge method in producing the load bearing wheel used in certain heavy duty vehicle, simplified and reduced size load bearing wheels were squeeze cast and studied using Al Cu...In order to use the cast method to replace forge method in producing the load bearing wheel used in certain heavy duty vehicle, simplified and reduced size load bearing wheels were squeeze cast and studied using Al Cu alloy. Tensile properties, hardness, microstructures and morphologies of the squeeze cast wheels were investigated. The results show that the finer microstructure, higher density, strength, toughness and hardness were achieved through the squeeze casting. Ultimate tensile strength of 428 MPa, yield strength of 360 MPa, elongation of 13.1% were achieved for T5 heat treated squeeze cast wheels. The Brinell hardness of squeeze cast wheels is from HB 120 to HB 137.展开更多
The experiment of ultrasonic treatment of roll casting aluminum strip on plane twin-roll cast-roller with double-heads ultrasonic tools was carried out, and the metallographic structure of the roll casting aluminum st...The experiment of ultrasonic treatment of roll casting aluminum strip on plane twin-roll cast-roller with double-heads ultrasonic tools was carried out, and the metallographic structure of the roll casting aluminum strip treated by ultrasonic was studied. The results show that ultrasonic treatment can refine the grain of the roll casting aluminum strips and make the structure of the strips more homogeneous. The effect is the best when the power of ultrasonic is 300 W and the incident angle of the guide rod is 45、. The mechanism of acoustic cavitations and acoustic flow on grain refinement was also discussed. The heat effect of intensity ultrasonic was studied. The present problems during ultrasonic roll casting process, such as the imperfect cooling system, the inaccurate calculation of ultrasonic energy, and the shape and position of the guide rod to be improved were pointed out.展开更多
An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface ar...An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.展开更多
The paper presents a novel material preparation technology—Solid liquid mixed casting technology. In the technology, large amounts of homogeneous alloy powder or heterogenous powder with perfect wettability are added...The paper presents a novel material preparation technology—Solid liquid mixed casting technology. In the technology, large amounts of homogeneous alloy powder or heterogenous powder with perfect wettability are added into the superheated melt. After strong agitation, the mixed melt can be cast or hot processed. Applying solid liquid mixed casting, three kinds of Al Si alloys were investigated. The results show that, when the mass of powder accession to alloy melt is about 1, the mean size of primary Si in hyper eutectic alloy can be controlled at less than 5 μm; and the mean grain size of α phase in hypo eutectic alloy is less than 10 μm. This technology has the advantage of preparing material with very fine microstructure by fairly simple casting process, and may be a new practicable and valuable metal preparation technology.展开更多
In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to ...In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).展开更多
The influence and signification of casting parameters on the solidification process of steel ingot were discussed based on the finite element method (FEM) results by orthogonal experiment method. The range analysis, a...The influence and signification of casting parameters on the solidification process of steel ingot were discussed based on the finite element method (FEM) results by orthogonal experiment method. The range analysis, analysis of variance (ANOVA) and optimization project were used to investigate the FEM results. In order to decrease the ingot riser head and improve the utilization ratio of ingot, the casting parameters involved casting temperature, pouring velocity and interface heat transfer were optimized to decrease shrinkage pore and microporosity. The results show that the heat transfer coefficient between melt and heated board is a more sensitive factor. It is favor to decrease the shrinkage pore and microporosity under the conditions of low temperature, high pouring velocity and high heat transfer between melt and mold. If heat transfer in the ingot body is quicker than that in the riser, the position of shrinkage pore and microporosity will be closer to riser top. The results of optimization project show that few of shrinkage pore and microporosity reach into ingot body with the rational parameters, so the riser size can be reduced.展开更多
文摘为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属性赋值方法对采样点赋值,从而将物体距离视点的距离与物体距离光源的距离有效地结合起来。最后,采用基于空间跳跃的加速技术显示背景体素。实验结果表明:对于512×512×482×2 Byte大小的体数据在减少至原来大小2/3的情况下,在普通微机上能够达到2.5 frame/s的清晰绘制。本算法能够实现一般大小体数据场的实时绘制,而且组织器官显示清晰,符合人的视觉特征。
基金Project(2010CB731700) supported by the National Basic Research Program of China
文摘With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.
文摘The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure, hardness are analyzed, and the stability of gradient distribution of composition, macrostructure and hardness along the axial direction of the ingot is also studied. The results show that diffe rent composition profiles can be achieved by adjusting the processing parameters; the volume fraction of inner alloy in the ingot can be increased by enlarging the throttle bore diameter and elevating the temperature of inner melt; quasi steady solidification can be realized within 20 s during cast processing, and consistent quality ingot is obtained by controlling the casting speed and liquid height of inner melt.
基金Projects(51435009,51575212,61573249,61371200)supported by the National Natural Science Foundation of ChinaProjects(2015T80798,2014M552040,2014M561250,2015M571328)supported by Postdoctoral Science Foundation of ChinaProject(L2015372)supported by Liaoning Province Education Administration,China
文摘A Lagrangian relaxation(LR) approach was presented which is with machine capacity relaxation and operation precedence relaxation for solving a flexible job shop(FJS) scheduling problem from the steelmaking-refining-continuous casting process. Unlike the full optimization of LR problems in traditional LR approaches, the machine capacity relaxation is optimized asymptotically, while the precedence relaxation is optimized approximately due to the NP-hard nature of its LR problem. Because the standard subgradient algorithm(SSA) cannot solve the Lagrangian dual(LD) problem within the partial optimization of LR problem, an effective deflected-conditional approximate subgradient level algorithm(DCASLA) was developed, named as Lagrangian relaxation level approach. The efficiency of the DCASLA is enhanced by a deflected-conditional epsilon-subgradient to weaken the possible zigzagging phenomena. Computational results and comparisons show that the proposed methods improve significantly the efficiency of the LR approach and the DCASLA adopting capacity relaxation strategy performs best among eight methods in terms of solution quality and running time.
文摘In order to use the cast method to replace forge method in producing the load bearing wheel used in certain heavy duty vehicle, simplified and reduced size load bearing wheels were squeeze cast and studied using Al Cu alloy. Tensile properties, hardness, microstructures and morphologies of the squeeze cast wheels were investigated. The results show that the finer microstructure, higher density, strength, toughness and hardness were achieved through the squeeze casting. Ultimate tensile strength of 428 MPa, yield strength of 360 MPa, elongation of 13.1% were achieved for T5 heat treated squeeze cast wheels. The Brinell hardness of squeeze cast wheels is from HB 120 to HB 137.
基金Projects(IRT0549) supported by Program for Changjiang Scholars and Innovative Research Team in University, China
文摘The experiment of ultrasonic treatment of roll casting aluminum strip on plane twin-roll cast-roller with double-heads ultrasonic tools was carried out, and the metallographic structure of the roll casting aluminum strip treated by ultrasonic was studied. The results show that ultrasonic treatment can refine the grain of the roll casting aluminum strips and make the structure of the strips more homogeneous. The effect is the best when the power of ultrasonic is 300 W and the incident angle of the guide rod is 45、. The mechanism of acoustic cavitations and acoustic flow on grain refinement was also discussed. The heat effect of intensity ultrasonic was studied. The present problems during ultrasonic roll casting process, such as the imperfect cooling system, the inaccurate calculation of ultrasonic energy, and the shape and position of the guide rod to be improved were pointed out.
基金Project(60806006) supported by the National Natural Science Foundation of China
文摘An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.
文摘The paper presents a novel material preparation technology—Solid liquid mixed casting technology. In the technology, large amounts of homogeneous alloy powder or heterogenous powder with perfect wettability are added into the superheated melt. After strong agitation, the mixed melt can be cast or hot processed. Applying solid liquid mixed casting, three kinds of Al Si alloys were investigated. The results show that, when the mass of powder accession to alloy melt is about 1, the mean size of primary Si in hyper eutectic alloy can be controlled at less than 5 μm; and the mean grain size of α phase in hypo eutectic alloy is less than 10 μm. This technology has the advantage of preparing material with very fine microstructure by fairly simple casting process, and may be a new practicable and valuable metal preparation technology.
基金Project(ZR2014FM036)supported by Shandong Provincial Natural Science Foundation of ChinaProject(ZR2010FZ001)supported by the Key Program of Shandong Provincial Natural Science Foundation of China
文摘In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).
基金Projects(50435010 50705080 50675187) supported by the National Natural Science Foundation of China
文摘The influence and signification of casting parameters on the solidification process of steel ingot were discussed based on the finite element method (FEM) results by orthogonal experiment method. The range analysis, analysis of variance (ANOVA) and optimization project were used to investigate the FEM results. In order to decrease the ingot riser head and improve the utilization ratio of ingot, the casting parameters involved casting temperature, pouring velocity and interface heat transfer were optimized to decrease shrinkage pore and microporosity. The results show that the heat transfer coefficient between melt and heated board is a more sensitive factor. It is favor to decrease the shrinkage pore and microporosity under the conditions of low temperature, high pouring velocity and high heat transfer between melt and mold. If heat transfer in the ingot body is quicker than that in the riser, the position of shrinkage pore and microporosity will be closer to riser top. The results of optimization project show that few of shrinkage pore and microporosity reach into ingot body with the rational parameters, so the riser size can be reduced.