Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limi...Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limitations. Oil and gas reservoir in beaches or lakes and offshore can be effectively exploited by using extended reach drilling (ERD) technology. This paper focuses on the difficult technological problems encountered during exploiting the Liuhua 11-1 oil field in the South China Sea, China. Emphasis is on investigating the key subjects including prediction and control of open hole limit extension in offshore ERD, prediction of casing wear and its prevention and torque reduction, φ244.5mm casing running with floating collars to control drag force, and steerable drilling modes. The basic concept of limit extension in ERD is presented and the prediction method for open hole limit extension is given in this paper. A set of advanced drilling mechanics and control technology has been established and its practical results are verified by field cases. All those efforts may be significant for further investigating and practicing ERD limit theory and control technology in the future.展开更多
The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba...The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.展开更多
The ITER neutron shielding blocks are located between the inner shell and the outer shell of the vacuum vessel (VV) with the main function of providing neutron shielding. Conskicring the combined loads of the shield...The ITER neutron shielding blocks are located between the inner shell and the outer shell of the vacuum vessel (VV) with the main function of providing neutron shielding. Conskicring the combined loads of the shielding blocks during the plasma operation of the ITER, limit analysis for one typical ferromagnetic (FM) shielding block has been performed and the structural design has bccn evaluated based on the American Society of Mechanical Engineers (ASME) criterion and European standards. Results show that the collapse load of this shielding block is three times the specified load, which is much higher than the design requirement of 1.25. The structure of this neutron shielding block has a sufficient safety margin.展开更多
The geotechnical slope design of an open pit wall starts at the bench scale configuration.At this scale,the rock slope stability is governed primarily by the geological discontinuities within the rock mass and as a re...The geotechnical slope design of an open pit wall starts at the bench scale configuration.At this scale,the rock slope stability is governed primarily by the geological discontinuities within the rock mass and as a result,structurally-controlled failures(e.g.planar,wedge or toppling)are most likely to occur.The probabilistic approach offers a major advantage over the traditional deterministic method in that it accounts for the different degrees of variability and uncertainty often encountered in rock properties.This paper presents a bench slope stability assessment for an open pit mine in Peru using a probabilistic-based approach by coupling a kinematic analysis based on stereographic projection techniques followed by a kinetic analysis by means of the limit equilibrium method.Finally,these two probabilities are combined to provide an overall measure of the probability of failure(PoF)of the bench slope system.The case study is characterized by significant scatter in the geometrical and mechanical properties of the joints.Extensive surface mapping was conducted at 36 different sites following the ISRM suggested procedures.Several direct shear tests were carried out.It is shown that by combining field and laboratory measurements and engineering judgment,the probability density functions(PDF)of the discontinuity parameters can be obtained.These are then used in a Monte Carlo simulation process to compute both kinematic and kinetic probabilities of failure.The overall probability of failure aims to provide the design engineer with a tool to critically evaluate the bench performance from a geotechnical risk perspective and to provide a basis for future bench design optimization.展开更多
The ITER neutron shielding blocks are located between the outer shell and the inner shell of the vacuum vessel to provide neutron shielding. Considering the combined loads acting on the shielding blocks during ITER pl...The ITER neutron shielding blocks are located between the outer shell and the inner shell of the vacuum vessel to provide neutron shielding. Considering the combined loads acting on the shielding blocks during ITER plasma operation, the structure of the shielding blocks must be evaluated. Using the finite element method with ANSYS analysis software, static structural analysis is performed, including elastic analysis and limit analysis for one typical shielding block. The evaluated results based on RCC-MR code show that the structure of this shielding block can meet the design requirement.展开更多
The face stability problem is a major concern for tunnels excavated in rock masses governed by the Hoek-Brown strength criterion.To provide an accurate prediction for the theoretical solution of the critical face pres...The face stability problem is a major concern for tunnels excavated in rock masses governed by the Hoek-Brown strength criterion.To provide an accurate prediction for the theoretical solution of the critical face pressure,this study adopts the piecewise linear method(PLM)to account for the nonlinearity of the strength envelope and proposes a new multi-horn rotational mechanism based on the Hoek-Brown strength criterion and the associative flow rule.The analytical solution of critical support pressure is derived from the energy-work balance equation in the framework of the plastic limit theorem;it is formulated as a multivariable nonlinear optimization problem relying on 2m dependent variables(m is the number of segments).Meanwhile,two classic linearized measures,the generalized tangential technique(GTT)and equivalent Mohr-Coulomb parameters method(EMM),are incorporated into the analysis for comparison.Surprisingly,the parametric study indicates a significant improvement in support pressure by up to 13%compared with the GTT,and as expected,the stability of the tunnel face is greatly influenced by the rock strength parameters.The stress distribution on the rupture surface is calculated to gain an intuitive understanding of the failure at the limit state.Although the limit analysis is incapable of calculating the true stress distribution in rock masses,a rough approximation of the stress vector on the rupture surface is permitted.In the end,sets of normalized face pressure are provided in the form of charts for a quick assessment of face stability in rock masses.展开更多
基金support from the project of CNOOC China Limited-Shenzhen (Grant No. Z2007SLSZ-034)the foundation project of the State Key Laboratory of Petroleum Resource and Prospecting (Grant No. PRPDX2008-08) is gratefully acknowledged
文摘Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limitations. Oil and gas reservoir in beaches or lakes and offshore can be effectively exploited by using extended reach drilling (ERD) technology. This paper focuses on the difficult technological problems encountered during exploiting the Liuhua 11-1 oil field in the South China Sea, China. Emphasis is on investigating the key subjects including prediction and control of open hole limit extension in offshore ERD, prediction of casing wear and its prevention and torque reduction, φ244.5mm casing running with floating collars to control drag force, and steerable drilling modes. The basic concept of limit extension in ERD is presented and the prediction method for open hole limit extension is given in this paper. A set of advanced drilling mechanics and control technology has been established and its practical results are verified by field cases. All those efforts may be significant for further investigating and practicing ERD limit theory and control technology in the future.
基金supported by the National Natural Science Foundation of China(52106284)the Natural Science Foundation of Hebei Province(B2021507001)support of Project to Promote Innovation in Doctoral Research at CPPU(BSKY202302).
文摘The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.
基金supported by IWS Detailed Design, Engineering Drawing Preparation and Analysis (No.2 Reference 4200000119 )
文摘The ITER neutron shielding blocks are located between the inner shell and the outer shell of the vacuum vessel (VV) with the main function of providing neutron shielding. Conskicring the combined loads of the shielding blocks during the plasma operation of the ITER, limit analysis for one typical ferromagnetic (FM) shielding block has been performed and the structural design has bccn evaluated based on the American Society of Mechanical Engineers (ASME) criterion and European standards. Results show that the collapse load of this shielding block is three times the specified load, which is much higher than the design requirement of 1.25. The structure of this neutron shielding block has a sufficient safety margin.
基金supported by a scholarship from the Peruvian Institute of Mining Engineers
文摘The geotechnical slope design of an open pit wall starts at the bench scale configuration.At this scale,the rock slope stability is governed primarily by the geological discontinuities within the rock mass and as a result,structurally-controlled failures(e.g.planar,wedge or toppling)are most likely to occur.The probabilistic approach offers a major advantage over the traditional deterministic method in that it accounts for the different degrees of variability and uncertainty often encountered in rock properties.This paper presents a bench slope stability assessment for an open pit mine in Peru using a probabilistic-based approach by coupling a kinematic analysis based on stereographic projection techniques followed by a kinetic analysis by means of the limit equilibrium method.Finally,these two probabilities are combined to provide an overall measure of the probability of failure(PoF)of the bench slope system.The case study is characterized by significant scatter in the geometrical and mechanical properties of the joints.Extensive surface mapping was conducted at 36 different sites following the ISRM suggested procedures.Several direct shear tests were carried out.It is shown that by combining field and laboratory measurements and engineering judgment,the probability density functions(PDF)of the discontinuity parameters can be obtained.These are then used in a Monte Carlo simulation process to compute both kinematic and kinetic probabilities of failure.The overall probability of failure aims to provide the design engineer with a tool to critically evaluate the bench performance from a geotechnical risk perspective and to provide a basis for future bench design optimization.
文摘The ITER neutron shielding blocks are located between the outer shell and the inner shell of the vacuum vessel to provide neutron shielding. Considering the combined loads acting on the shielding blocks during ITER plasma operation, the structure of the shielding blocks must be evaluated. Using the finite element method with ANSYS analysis software, static structural analysis is performed, including elastic analysis and limit analysis for one typical shielding block. The evaluated results based on RCC-MR code show that the structure of this shielding block can meet the design requirement.
基金supported by Fundamental Research Funds for the central universities of Central South University(No.2022ZZTS0153).
文摘The face stability problem is a major concern for tunnels excavated in rock masses governed by the Hoek-Brown strength criterion.To provide an accurate prediction for the theoretical solution of the critical face pressure,this study adopts the piecewise linear method(PLM)to account for the nonlinearity of the strength envelope and proposes a new multi-horn rotational mechanism based on the Hoek-Brown strength criterion and the associative flow rule.The analytical solution of critical support pressure is derived from the energy-work balance equation in the framework of the plastic limit theorem;it is formulated as a multivariable nonlinear optimization problem relying on 2m dependent variables(m is the number of segments).Meanwhile,two classic linearized measures,the generalized tangential technique(GTT)and equivalent Mohr-Coulomb parameters method(EMM),are incorporated into the analysis for comparison.Surprisingly,the parametric study indicates a significant improvement in support pressure by up to 13%compared with the GTT,and as expected,the stability of the tunnel face is greatly influenced by the rock strength parameters.The stress distribution on the rupture surface is calculated to gain an intuitive understanding of the failure at the limit state.Although the limit analysis is incapable of calculating the true stress distribution in rock masses,a rough approximation of the stress vector on the rupture surface is permitted.In the end,sets of normalized face pressure are provided in the form of charts for a quick assessment of face stability in rock masses.