In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimension...In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.展开更多
A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical prope...A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical properties of soil with the loading and unloading action during excavation process.The change law of earth pressure of the normal consolidation soil after the foundation pit excavation was analyzed,and elastic displacement calculation methods of analytic solution were further established given the influence of excavation and unloading.According to the change of stress state in the excavation process of foundation pit,the planar mechanical analysis model of the foundation excavation problem was established.By combining this model with the physical equations and geometric equations of plane strain problem with consideration of the loading and unloading modulus of soil,constitutive equation of the plane strain problem was also established.The loading and unloading modulus formula was obtained by using the parameter calculation method in Duncan-Chang curve model.The constitutive equation obtained from the model was used to calculate the soil stress state of each point to determine its loading and unloading modulus.Finally,the foundation pit displacement change after excavation was calculated,and thus the soil pressure distribution after retaining structure deformation.The theoretical results calculated by making corresponding programs were applied to engineering practice.By comparing the conventional calculation results with monitoring results,the practicability and feasibility of the calculation model were verified,which should provide a theoretical basis for similar projects.展开更多
According to the different stress paths,similar model test and PFC simulation test of tunnel surrounding rock are designed to compare the failure mechanisms at macroscopic and mesoscopic scales.The following conclusio...According to the different stress paths,similar model test and PFC simulation test of tunnel surrounding rock are designed to compare the failure mechanisms at macroscopic and mesoscopic scales.The following conclusions are drawn.1)Excavation unloading will disturb the surrounding rock to form a certain excavation damaged zone.2)Under the loading path,the stress of surrounding rock failure is 1.500 MPa;under the unloading path with initial stress of 60% σ_(Zmax) and 100% σ_(Zmax),the failure stress is 1.583 and 1.833 MPa respectively in the model test.3)In terms of the failure mode of rocks under different stress paths,tensile fractures first appear in two sides of the vertical walls;thereafter,the spandrel and arch foot are loosened due to the stress concentration.The fractures gradually coalesce with those occurring in the vertical walls.4)In the process of excavation unloading,the proportion of shear cracks is 35.3%,and the rock is subject to strong shear effect.The final failure surface is approximately V-shaped.5)The tangential peak stress on the vertical walls at the free face is the lowest;the vertical walls at the free face show the poorest bearing capacity and are easily subjected to tensile failure.展开更多
基金Projects(42077244,41877272)supported by the National Natural Science Foundation of ChinaProject(2020-05)supported by the Open Research Fund of Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization,China。
文摘In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.
基金Project(41672290)supported by the National Natural Science Foundation of ChinaProject(2016J01189)supported by the Natural Science foundation of Fujian Province,China
文摘A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical properties of soil with the loading and unloading action during excavation process.The change law of earth pressure of the normal consolidation soil after the foundation pit excavation was analyzed,and elastic displacement calculation methods of analytic solution were further established given the influence of excavation and unloading.According to the change of stress state in the excavation process of foundation pit,the planar mechanical analysis model of the foundation excavation problem was established.By combining this model with the physical equations and geometric equations of plane strain problem with consideration of the loading and unloading modulus of soil,constitutive equation of the plane strain problem was also established.The loading and unloading modulus formula was obtained by using the parameter calculation method in Duncan-Chang curve model.The constitutive equation obtained from the model was used to calculate the soil stress state of each point to determine its loading and unloading modulus.Finally,the foundation pit displacement change after excavation was calculated,and thus the soil pressure distribution after retaining structure deformation.The theoretical results calculated by making corresponding programs were applied to engineering practice.By comparing the conventional calculation results with monitoring results,the practicability and feasibility of the calculation model were verified,which should provide a theoretical basis for similar projects.
基金Project(52179104)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME099,ZR2020MD111,ZR2019BEE051)supported by the Shandong Provincial Natural Science Foundation,China。
文摘According to the different stress paths,similar model test and PFC simulation test of tunnel surrounding rock are designed to compare the failure mechanisms at macroscopic and mesoscopic scales.The following conclusions are drawn.1)Excavation unloading will disturb the surrounding rock to form a certain excavation damaged zone.2)Under the loading path,the stress of surrounding rock failure is 1.500 MPa;under the unloading path with initial stress of 60% σ_(Zmax) and 100% σ_(Zmax),the failure stress is 1.583 and 1.833 MPa respectively in the model test.3)In terms of the failure mode of rocks under different stress paths,tensile fractures first appear in two sides of the vertical walls;thereafter,the spandrel and arch foot are loosened due to the stress concentration.The fractures gradually coalesce with those occurring in the vertical walls.4)In the process of excavation unloading,the proportion of shear cracks is 35.3%,and the rock is subject to strong shear effect.The final failure surface is approximately V-shaped.5)The tangential peak stress on the vertical walls at the free face is the lowest;the vertical walls at the free face show the poorest bearing capacity and are easily subjected to tensile failure.