The uncertainty analysis is an effective sensitivity analysis method for system model analysis and optimization. However,the existing single-factor uncertainty analysis methods are not well used in the logistic suppor...The uncertainty analysis is an effective sensitivity analysis method for system model analysis and optimization. However,the existing single-factor uncertainty analysis methods are not well used in the logistic support systems with multiple decision-making factors. The multiple transfer parameters graphical evaluation and review technique(MTP-GERT) is used to model the logistic support process in consideration of two important factors, support activity time and support activity resources, which are two primary causes for the logistic support process uncertainty. On this basis,a global sensitivity analysis(GSA) method based on covariance is designed to analyze the logistic support process uncertainty. The aircraft support process is selected as a case application which illustrates the validity of the proposed method to analyze the support process uncertainty, and some feasible recommendations are proposed for aircraft support decision making on carrier.展开更多
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
The competence set analysis technology can be applied to solve the decision making problems successfully and satisfactorily. This paper mainly focuses on the expanding strategy research and development of the competen...The competence set analysis technology can be applied to solve the decision making problems successfully and satisfactorily. This paper mainly focuses on the expanding strategy research and development of the competence set under risk and uncertainty. A systematic expression of the competence set analysis is described, several expanding principles and strategies with regard to several different cases are presented, and their applications in the personnel training program are discussed, some conclusions and suggestions to be developed in a further work are included.展开更多
This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition ...This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition rate comparison procedures and discusses their limitations. A new method, the posterior probability calculation(PPC) procedure is then proposed based on Bayesian technique. The paper analyzes the basic principle, process steps and computational complexity of the PPC procedure. In the Bayesian view, the posterior probability represents the credible degree(equal to confidence level) of the comparison results. The posterior probability of correctly selecting or sorting the competing recognition algorithms is derived, and the minimum sample size requirement is also pre-estimated and given out by the form of tables. To further illustrate how to use our method, the PPC procedure is used to prove the rationality of the experiential choice in one application and then to calculate the confidence level with the fixed-size datasets in another application. These applications reveal the superiority of the PPC procedure, and the discussions about the stopping rule further explain the underlying statistical causes. Finally we conclude that the PPC procedure achieves all the expected functions and be superior to the traditional methods.展开更多
The accuracy of thermal analysis measurements is critical to analyze material properties correctly,making the improvement of measurement precision and proper uncertainty analysis of test results absolutely essential.A...The accuracy of thermal analysis measurements is critical to analyze material properties correctly,making the improvement of measurement precision and proper uncertainty analysis of test results absolutely essential.As a primary thermal analysis instrument,the simultaneous thermal analyzer(STA)has unique advantages,which combines the functionalities of thermogravimetric(TG)analyzersand differential scanning calorimeters(DSC).However,the absence of standard quality control procedures has resulted in poor measurement reproducibility,low accuracy,and inadequate traceability of analytical results.This study utilized a multi-point temperature calibration method based on national certified reference materials to reduce instrument temperature indication errors.On this basis,we innovatively established a comprehensive quality control system encompassing laboratory environmental control,standard method selection,instrument performance verification,reference material traceability,and uncertainty analysis,thereby achieving standardized operational procedures for thermal analysis measurement.Taking the"determination of initial melting temperature of unknown substances"as a representative case study,a component resolution model for thermal analysis test uncertainty was developed.Through systematic analysis of both the reference material-introduced component and measurement repeatability component,complete traceability of test results was achieved.This approach ensures data validity and enhances the accuracy of test results.This provides crucial technical support and practical reference for the standardization of thermal analysis measurement procedure and assessment of result reliability.展开更多
基金supported by the National Natural Science Foundation of China(71171008)
文摘The uncertainty analysis is an effective sensitivity analysis method for system model analysis and optimization. However,the existing single-factor uncertainty analysis methods are not well used in the logistic support systems with multiple decision-making factors. The multiple transfer parameters graphical evaluation and review technique(MTP-GERT) is used to model the logistic support process in consideration of two important factors, support activity time and support activity resources, which are two primary causes for the logistic support process uncertainty. On this basis,a global sensitivity analysis(GSA) method based on covariance is designed to analyze the logistic support process uncertainty. The aircraft support process is selected as a case application which illustrates the validity of the proposed method to analyze the support process uncertainty, and some feasible recommendations are proposed for aircraft support decision making on carrier.
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
基金National Natural Science Foundation of China (No. 79870030).
文摘The competence set analysis technology can be applied to solve the decision making problems successfully and satisfactorily. This paper mainly focuses on the expanding strategy research and development of the competence set under risk and uncertainty. A systematic expression of the competence set analysis is described, several expanding principles and strategies with regard to several different cases are presented, and their applications in the personnel training program are discussed, some conclusions and suggestions to be developed in a further work are included.
基金supported by the National Natural Science Foundation of China(61101179)
文摘This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition rate comparison procedures and discusses their limitations. A new method, the posterior probability calculation(PPC) procedure is then proposed based on Bayesian technique. The paper analyzes the basic principle, process steps and computational complexity of the PPC procedure. In the Bayesian view, the posterior probability represents the credible degree(equal to confidence level) of the comparison results. The posterior probability of correctly selecting or sorting the competing recognition algorithms is derived, and the minimum sample size requirement is also pre-estimated and given out by the form of tables. To further illustrate how to use our method, the PPC procedure is used to prove the rationality of the experiential choice in one application and then to calculate the confidence level with the fixed-size datasets in another application. These applications reveal the superiority of the PPC procedure, and the discussions about the stopping rule further explain the underlying statistical causes. Finally we conclude that the PPC procedure achieves all the expected functions and be superior to the traditional methods.
文摘The accuracy of thermal analysis measurements is critical to analyze material properties correctly,making the improvement of measurement precision and proper uncertainty analysis of test results absolutely essential.As a primary thermal analysis instrument,the simultaneous thermal analyzer(STA)has unique advantages,which combines the functionalities of thermogravimetric(TG)analyzersand differential scanning calorimeters(DSC).However,the absence of standard quality control procedures has resulted in poor measurement reproducibility,low accuracy,and inadequate traceability of analytical results.This study utilized a multi-point temperature calibration method based on national certified reference materials to reduce instrument temperature indication errors.On this basis,we innovatively established a comprehensive quality control system encompassing laboratory environmental control,standard method selection,instrument performance verification,reference material traceability,and uncertainty analysis,thereby achieving standardized operational procedures for thermal analysis measurement.Taking the"determination of initial melting temperature of unknown substances"as a representative case study,a component resolution model for thermal analysis test uncertainty was developed.Through systematic analysis of both the reference material-introduced component and measurement repeatability component,complete traceability of test results was achieved.This approach ensures data validity and enhances the accuracy of test results.This provides crucial technical support and practical reference for the standardization of thermal analysis measurement procedure and assessment of result reliability.