期刊文献+
共找到86,327篇文章
< 1 2 250 >
每页显示 20 50 100
Ultra-High Temperature Gratings
1
作者 John Canning Somnath Bandyopadhyay +1 位作者 Michael Stevenson Kevin Cook 《Journal of Electronic Science and Technology of China》 2008年第4期420-422,共3页
Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other ... Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers. 展开更多
关键词 ANNEALING Bragg gratings regenerated gratings temperature sensing ultra-high temperature.
在线阅读 下载PDF
Ideal Bi‑Based Hybrid Anode Material for Ultrafast Charging of Sodium‑Ion Batteries at Extremely Low Temperatures
2
作者 Jie Bai Jian Hui Jia +2 位作者 Yu Wang Chun Cheng Yang Qing Jiang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期152-167,共16页
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o... Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current. 展开更多
关键词 Bi nanoparticles High temperature shock High-rate activation Ultrafast charging Low-temperature sodium-ion batteries
在线阅读 下载PDF
Pressure and temperature effects resulting from impact onto materials of different reactivity
3
作者 Andreas Heine Matthias Wickert 《Defence Technology(防务技术)》 2025年第2期221-230,共10页
The pressure and temperature increase resulting from the impact of different threats onto target materials is analyzed with a unified laboratory-scale setup.This allows deriving qualitative information on the occurrin... The pressure and temperature increase resulting from the impact of different threats onto target materials is analyzed with a unified laboratory-scale setup.This allows deriving qualitative information on the occurring phenomenology as well as quantitative statements about the relative effects sizes as a function of target material and threat.The considered target materials are steel,aluminum,and magnesium.As threats,kinetic energy penetrator,explosively formed projectile,and shaped charge jet are used.For the investigated combinations,the measured overpressures vary by a factor of up to 5 for a variation of the material,by a factor of up to 7 for a variation of the threat,and by a factor larger than 15for a simultaneous variation of both.The obtained results as well as the experimental approach are relevant for the basic understanding of impact effects and risks due to material reactivity.The paper combines two main aims.Firstly,to provide a summary of own prior work in a coherent journal article and,secondly,to review and discuss these earlier results with a new perspective. 展开更多
关键词 Impact effects PRESSURE temperature Risk assessment Material reactivity
在线阅读 下载PDF
Experimental study of dual nano-network, high-temperature resistant aerogel material as an integration of thermal management functions
4
作者 Yueyue Xiao Tianke Mao +3 位作者 Zun Zhao Yuelei Pan Heping Zhang Xudong Cheng 《Journal of Energy Chemistry》 2025年第1期157-170,共14页
Thermal management system is highly desirable to guarantee the performance and thermal safety of lithium-ion batteries,but it reduces the energy density of battery modules and even is unable to provide highly effectiv... Thermal management system is highly desirable to guarantee the performance and thermal safety of lithium-ion batteries,but it reduces the energy density of battery modules and even is unable to provide highly effective protection.Here,a thermal management function integrated material is presented based on high-temperature resistant aerogel and phase change material and is applied at both charge–discharge process and thermal runaway condition.In this sandwich structure Paraffin@SiC nanowire/Aerogel sheet (denoted as PA@SAS) system,SiC nanowires endow the middle aerogel sheet (SAS) a dual nano-network structure.The enhanced mechanical properties of SAS were studied by compressive tests and dynamic mechanical analysis.Besides,the thermal conductivity of SAS at 600°C is only 0.042 W/(m K).The surface phase change material layers facilitate temperature uniformity of batteries (surface temperature difference less than 1.82°C) through latent heat.Moreover,a large-format battery module with four 58 Ah LiNi0.5Co0.2Mn0.3O2LIBs was assembled.PA@SAS successfully prevents thermal runaway propagation,yielding a temperature gap of 602°C through the 2 mm-thick cross section.PA@SAS also exhibits excellent performance in other safety issues such as temperature rise rate,flame heat flux,etc.The lightweight property and effective insulation performance achieves significant safety enhancement with mass and volume energy density reduction of only 0.79%and 5.4%,respectively.The originality of the present research stems from the micro and macro structure design of the proposed thermal management material and the combination of intrinsic advantages of every component.This work provides a reliable design of achieving the integration of thermal management functions into an aerogel composite and improves the thermal safety of lithium-ion batteries. 展开更多
关键词 Thermal management LITHIUM-IONBATTERIES AEROGEL High temperature thermal insulation
在线阅读 下载PDF
Real-world cost-effectiveness of targeted temperature management in out-of-hospital cardiac arrest survivors: results from an academic medical center
5
作者 Wachira Wongtanasarasin Daniel K.Nishijima +1 位作者 Wanrudee Isaranuwatchai Jeff rey S.Hoch 《World Journal of Emergency Medicine》 2025年第1期28-34,共7页
BACKGROUND: Targeted temperature management(TTM) is a common therapeutic intervention, yet its cost-effectiveness remains uncertain. This study aimed to evaluate the real-world cost-effectiveness of TTM compared with ... BACKGROUND: Targeted temperature management(TTM) is a common therapeutic intervention, yet its cost-effectiveness remains uncertain. This study aimed to evaluate the real-world cost-effectiveness of TTM compared with that of conventional care in adult out-of-hospital cardiac arrest(OHCA) survivors using clinical patient-level data.METHODS: We conducted a retrospective cohort study at an academic medical center in the USA to assess the cost-effectiveness of TTM in adult non-traumatic OHCA survivors between 1 January, 2019 and 30 June, 2023. The primary outcome was survival to hospital discharge. Incremental cost-effectiveness ratios(ICERs) were calculated and compared with various decision makers' willingness to pay. Cost-effectiveness acceptability curves were utilized to evaluate the economic attractiveness of TTM. Uncertainty about the incremental cost and effect was explored with a 95% confidence ellipse.RESULTS: Among 925 non-traumatic OHCA survivors, only 30(3%) received TTM. After adjusting for potential confounders, the TTM group did not demonstrate a significantly lower cost(delta cost-$5,141, 95% confidence interval [95% CI]: $-35,347 to $25,065, P=0.79) and higher survival to hospital discharge(delta effect 6%, 95% CI:-11% to 23%, P=0.41). Additionally, a 95% confidence ellipse indicated uncertainty reflected by evidence that the true value of the ICER could be in any of the quadrants of the cost-effectiveness plane.CONCLUSION: Although TTM did not demonstrate a clear survival benefit in this study, its potential cost-effectiveness warrants further investigation with larger sample sizes. These findings highlight the need for additional research to optimize TTM use in OHCA care and inform resource allocation decisions. 展开更多
关键词 Out-of-hospital cardiac arrest Targeted temperature management COST-EFFECTIVENESS SURVIVAL Real-world data
在线阅读 下载PDF
A binary eutectic electrolyte design for high-temperature interface-compatible Zn-ion batteries
6
作者 Guomin Li Wentao Wen +7 位作者 Kefeng Ouyang Yanyi Wang Jianhui Zhu Ming Yang Hongwei Mi Ning Zhao Peixin Zhang Dingtao Ma 《Journal of Energy Chemistry》 2025年第2期587-597,I0012,共12页
The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design c... The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design concept of eutectic electrolyte is presented by mixing long chain polymer molecules,polyethylene glycol dimethyl ether(PEGDME),with H_(2)O based on zinc trifluoromethyl sulfonate(Zn(OTf)2),to reconstruct the Zn^(2+)solvated structure and in situ modified the adsorption layer on Zn electrode surface.Molecular dynamics simulations(MD),density functional theory(DFT)calculations were combined with experiment to prove that the long-chain polymer-PEGDME could effectively reduce side reactions,change the solvation structure of the electrolyte and priority absorbed on Zn(002),achieving a stable dendrite-free Zn anode.Due to the comprehensive regulation of solvation structure and zinc deposition by PEGDME,it can stably cycle for over 3200 h at room temperature at 0.5 mA/cm^(2)and 0.5 mAh/cm^(2).Even at high-temperature environments of 60℃,it can steadily work for more than 800 cycles(1600 h).Improved cyclic stability and rate performance of aqueous Zn‖VO_(2)batteries in modified electrolyte were also achieved at both room and high temperatures.Beyond that,the demonstration of stable and high-capacity Zn‖VO_(2)pouch cells also implies its practical application. 展开更多
关键词 Eutectic electrolyte Solvation structure Dendrite suppression High temperature Zn anode
在线阅读 下载PDF
Recent Advances in Wide-Range Temperature Metal-CO_(2)Batteries:A Mini Review
7
作者 Xuejing Zhang Ning Zhao +7 位作者 Hanqi Zhang Yiming Fan Feng Jin Chunsheng Li Yan Sun Jiaqi Wang Ming Chen Xiaofei Hu 《Nano-Micro Letters》 2025年第4期435-453,共19页
The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.Ho... The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.However,the electrochemical performance of M-CO_(2)batteries faces significant challenges,particularly at extreme temperatures.Issues such as high overpotential,poor charge reversibility,and cycling capacity decay arise from complex reaction interfaces,sluggish oxidation kinetics,inefficient catalysts,dendrite growth,and unstable electrolytes.Despite significant advancements at room temperature,limited research has focused on the performance of M-CO_(2)batteries across a wide-temperature range.This review examines the effects of low and high temperatures on M-CO_(2)battery components and their reaction mechanism,as well as the advancements made in extending operational ranges from room temperature to extremely low and high temperatures.It discusses strategies to enhance electrochemical performance at extreme temperatures and outlines opportunities,challenges,and future directions for the development of M-CO_(2)batteries. 展开更多
关键词 M-CO_(2)batteries Wide-range temperature Electrolytes INTERFACES Electrode reactions
在线阅读 下载PDF
Temporal variation characteristics of cathode temperature in a magnetoplasmadynamic thruster
8
作者 Cheng Zhou Peng Wu +4 位作者 Yun-Tao Song Jin-Xing Zheng Yong Li Ge Wang Hai-Yang Liu 《Chinese Physics B》 2025年第2期334-340,共7页
The magnetoplasmadynamic thruster(MPDT) is characterized by its high specific impulse and substantial thrust density, making it a promising propulsion system for deep space exploration missions. In both laboratory exp... The magnetoplasmadynamic thruster(MPDT) is characterized by its high specific impulse and substantial thrust density, making it a promising propulsion system for deep space exploration missions. In both laboratory experiments and practical applications, cathode ablation has emerged as a critical concern. An optical diagnostic approach based on monochromatic radiation temperature measurement, utilizing plume emission spectra and the selection of an appropriate test band, has been successfully employed. This method provides an accurate temperature distribution across the cathode surface, offering a novel testing technique for the optimization and evaluation of magnetic plasma thruster designs. 展开更多
关键词 magnetoplasmadynamic thruster(MPDT) optical diagnostic monochromatic radiation cathode temperature
在线阅读 下载PDF
Tailoring temperature response for a multimode fiber
9
作者 Han Gao Haifeng Hu Qiwen Zhan 《Opto-Electronic Science》 2025年第1期12-24,共13页
This work introduces special states for light in multimode fibers featuring strongly enhanced or reduced correlations be-tween output fields in the presence of environmental temperature fluctuations.Using experimental... This work introduces special states for light in multimode fibers featuring strongly enhanced or reduced correlations be-tween output fields in the presence of environmental temperature fluctuations.Using experimentally measured multi-tem-perature transmission matrix,a set of temperature principal modes that exhibit resilience to disturbances caused by tem-perature fluctuations can be generated.Reversing this concept also allows the construction of temperature anti-principal modes,with output profiles more susceptible to temperature influences than the unmodulated wavefront.Despite changes in the length of the multimode fiber within the temperature-fluctuating region,the proposed approach remains capable of robustly controlling the temperature response within the fiber.To illustrate the practicality of the proposed spe-cial state,a learning-empowered fiber specklegram temperature sensor based on temperature anti-principal mode sensi-tization is proposed.This sensor exhibits outstanding superiority over traditional approaches in terms of resolution and accuracy.These novel states are anticipated to have wide-ranging applications in fiber communication,sensing,imaging,and spectroscopy,and serve as a source of inspiration for the discovery of other novel states. 展开更多
关键词 multimode fiber principal mode wavefront shaping optical fiber sensor temperature response
在线阅读 下载PDF
Structural and transport properties of(Mg,Fe)SiO_(3) at high temperature and high pressure
10
作者 Shu Huang Zhiyang Xiang +5 位作者 Shi He Luhan Yin Shihe Zhang Chen Chen Kaihua He Cheng Lu 《Chinese Physics B》 2025年第3期123-129,共7页
(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport propert... (Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport properties of(Mg,Fe)SiO_(3) with varying iron contents at temperatures up to 5000 K and pressures up to 135 GPa.We thoroughly examine the effects of pressure,temperature,and iron content on the bond lengths,coordination numbers,viscosities,and electrical conductivities of(Mg,Fe)SiO_(3).Our calculations indicate that the increase of pressure leads to the shortening of the O-O and Mg-O bond lengths,while the Si-O bond lengths exhibit the initial increase with pressure up to 40 GPa,after which they are almost unchanged.The coordination numbers of Si transition from four-fold to six-fold and eventually reach eight-fold coordination at 135 GPa.The enhanced pressure causes the decrease of the diffusion coefficients and the increase of the viscosities of(Mg,Fe)SiO_(3).The increased temperatures slightly decrease the coordination numbers and viscosities,as well as obviously increase the diffusion coefficients and electrical conductivities of(Mg,Fe)SiO_(3).Additionally,iron doping facilitates the diffusion of Si and O,reduces the viscosities,and enhances the electrical conductivities of(Mg,Fe)SiO_(3).These findings advance fundamental understanding of the structural and transport properties of(Mg,Fe)SiO_(3) under high temperature and high pressure,which provide novel insights for unraveling the complexities of geological processes within the Earth's mantle. 展开更多
关键词 (Mg Fe)SiO_(3) structural and transport properties molecular dynamics simulations high temperature and high pressure
在线阅读 下载PDF
Diphylleia Grayi-Inspired Intelligent Temperature-Responsive Transparent Nanofiber Membranes 被引量:1
11
作者 Cengceng Zhao Gaohui Liu +6 位作者 Yanyan Lin Xueqin Li Na Meng Xianfeng Wang Shaoju Fu Jianyong Yu Bin Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期67-78,共12页
Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a ... Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices. 展开更多
关键词 BIOMIMETIC TRANSPARENT Nanofibrous membrane temperature response Phase change materials
在线阅读 下载PDF
Revealing the key role of non-solvating diluents for fast-charging and low temperature Li-ion batteries 被引量:1
12
作者 Yuping Zhang Siyin Li +8 位作者 Junkai Shi Jiawei Lai Ziyue Zhuang Jingwen Liu Wenming Yang Liang Ma Yue-Peng Cai Jijian Xu Qifeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期171-180,共10页
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t... Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs. 展开更多
关键词 Li-ion battery Fast-charging Low temperature Non-solvating diluent Shielding effect
在线阅读 下载PDF
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:2
13
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture Solar heating Passive radiative cooling temperature swing adsorption
在线阅读 下载PDF
Gouge stability controlled by temperature elevation and obsidian addition in basaltic faults and implications for moonquakes 被引量:1
14
作者 Shutian Cao Fengshou Zhang +4 位作者 Mengke An Derek Elsworth Manchao He Hai Liu Luanxiao Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1273-1282,共10页
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear... Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults. 展开更多
关键词 Fault stability Basaltic fault temperature elevation Obsidian content Shallow moonquakes
在线阅读 下载PDF
Electrolyte Design for Low‑Temperature Li‑Metal Batteries:Challenges and Prospects 被引量:1
15
作者 Siyu Sun Kehan Wang +3 位作者 Zhanglian Hong Mingjia Zhi Kai Zhang Jijian Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期365-382,共18页
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ... Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries. 展开更多
关键词 Solid electrolyte interphase Li metal Low temperature Electrolyte design BATTERIES
在线阅读 下载PDF
High-performance imidazole-containing polymers for applications in high temperature polymer electrolyte membrane fuel cells 被引量:1
16
作者 Tong Mu Lele Wang +3 位作者 Qian Wang Yang Wu Patric Jannasch Jingshuai Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期512-523,共12页
This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped... This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology. 展开更多
关键词 High temperature polymer electrolyte membrane Imidazole-containing polymer Chemical stability Fuel cell
在线阅读 下载PDF
Study on the dynamic contact relationship between layers under temperature gradients in CRTSⅢ ballastless track 被引量:2
17
作者 Lei Zhao Guotang Zhao +2 位作者 Guotao Yang Hao Jin Chenxi Li 《High-Speed Railway》 2024年第3期133-142,共10页
In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities ... In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities that increase the wheel-rail impact of high-speed vehicles and accelerate track structure damage.Therefore,it is necessary to study the dynamic contact relationship between the composite slab and the base plate during vehicle running.The results of the study show that:1)Under the influence of temperature gradients,the composite slab tends to deform elliptically.With a positive temperature gradient,the middle part of the track slab bulges upward,causing the slab to be supported by its four corners.Conversely,with a negative temperature gradient,the four corners of the track slab bulge upward,resulting in the slab being supported by its center.2)Temperature gradients can lead to separation between the composite slab and the base plate,reducing the contact area between layers.During vehicle running,the contact area between layers gradually increases,but the separation cannot be completely closed.3)The temperature gradient significantly affects the vertical displacement of the track.The vertical displacement in the middle of the slab increases with a positive temperature gradient.In contrast,the vertical displacement at the ends of the slab increases with a negative temperature gradient.4)The stress of self-compacting concrete at the side position significantly increases under a positive temperature gradient,with the vertical stress increasing by 2.7 times when the temperature gradient increases from 0 to 90℃·m^(-1). 展开更多
关键词 High-speed railway Ballastless track temperature gradient Periodic irregularities Interlayer contact
在线阅读 下载PDF
Temperature inversion enables superior stability for low-temperature Zn-ion batteries 被引量:1
18
作者 Fu-Da Yu Zhe-Jian Yi +10 位作者 Rui-Yang Li Wei-Hao Lin Jie Chen Xiao-Yue Chen Yi-Ming Xie Ji-Huai Wu Zhang Lan Lan-Fang Que Bao-Sheng Liu Hao Luo Zhen-Bo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期245-253,共9页
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ... It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems. 展开更多
关键词 Aqueous Zn-ion batteries Low-temperature performance Opposite temperature dependence Zndendrite growth Vanadium dissolution
在线阅读 下载PDF
SIMULATION OF TEMPERATURE FIELD IN ULTRA-HIGH FREQUENCY INDUCTION HEATING AND VERIFICATION 被引量:2
19
作者 李奇林 徐九华 苏宏华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期155-161,共7页
An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of... An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors. 展开更多
关键词 ultra-high frequency induction heating temperature field FLUX 2Dsoftware
在线阅读 下载PDF
A study on temperature monitoring method for inverter IGBT based on memory recurrent neural network 被引量:1
20
作者 Yunhe Liu Tengfei Guo +2 位作者 Jinda Li Chunxing Pei Jianqiang Liu 《High-Speed Railway》 2024年第1期64-70,共7页
The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining d... The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining device reliability.Existing temperature monitoring methods based on the electro-thermal coupling model have limitations,such as ignoring device interactions and high computational complexity.To address these issues,an analysis of the parameters influencing IGBT failure is conducted,and a temperature monitoring method based on the Macro-Micro Attention Long Short-Term Memory(MMALSTM)recursive neural network is proposed,which takes the forward voltage drop and collector current as features.Compared with the traditional electricalthermal coupling model method,it requires fewer monitoring parameters and eliminates the complex loss calculation and equivalent thermal resistance network establishment process.The simulation model of a highspeed train traction system has been established to explore the accuracy and efficiency of MMALSTM-based prediction methods for IGBT power module junction temperature.The simulation outcomes,which deviate only 3.2% from the theoretical calculation results of the electric-thermal coupling model,confirm the reliability of this approach for predicting the temperature of IGBT power modules. 展开更多
关键词 IGBT Electro-thermal coupling model Junction temperature monitoring Loss model Neural networks
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部