This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s...This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.展开更多
In this paper we obtain an Itôdifferential representation for a class of singular stochastic Volterra integral equations.As an application,we investigate the rate of convergence in the small time central limit th...In this paper we obtain an Itôdifferential representation for a class of singular stochastic Volterra integral equations.As an application,we investigate the rate of convergence in the small time central limit theorem for the solution.展开更多
In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical...In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.展开更多
Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {...Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {B_t} are established.AMS Subject Classification. 60H05.展开更多
In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequal...In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities.展开更多
This paper is concerned with the existence and uniqueness of solution for a class of stochastic functional equation: X =φ(X), where φ: B → B and B is a Banach space consisted of all left-continuous, (■_t)-adapted ...This paper is concerned with the existence and uniqueness of solution for a class of stochastic functional equation: X =φ(X), where φ: B → B and B is a Banach space consisted of all left-continuous, (■_t)-adapted processes. Also, the main result is applied to some S.D.E (or S.I.E.). And the authors adopted some of the results in current research in the models of stochastic control recently. This paper proves the ekistence and uniquence and uniqueness of solution for stochastic functional equation. A series of corollaries are deduced from the special examples of the theorems in this paper.展开更多
This article attempts to give a short survey of recent progress on a class of elementary stochastic partial differential equations (for example, stochastic heat equations) driven by Gaussian noise of various covarianc...This article attempts to give a short survey of recent progress on a class of elementary stochastic partial differential equations (for example, stochastic heat equations) driven by Gaussian noise of various covariance structures. The focus is on the existence and uniqueness of the classical (square integrable) solution (mild solution, weak solution). It is also concerned with the Feynman-Kac formula for the solution;Feynman-Kac formula for the moments of the solution;and their applications to the asymptotic moment bounds of the solution. It also briefly touches the exact asymptotics of the moments of the solution.展开更多
Using multiple stochastic integrals and the stochastic calculus for the frac-tional Brownian sheet, we define and we analyze the 2D-fractional stochastic currents.
We introduce anticipating quadrant and symmetric integrals in the plane, and establish the associated chain rules which are the same as the deterministic ones. In particular, we deduce the relation between quadrant in...We introduce anticipating quadrant and symmetric integrals in the plane, and establish the associated chain rules which are the same as the deterministic ones. In particular, we deduce the relation between quadrant integrals, symmetric integral, and Skorohod integral with respect to two-parameter Wiener processes.展开更多
基金the financial support provided by the Swedish Research Council grant(2020-04697)the Norwegian Research Council grant(250768/F20),respectively。
文摘This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.
基金Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 101.03-2019.08.
文摘In this paper we obtain an Itôdifferential representation for a class of singular stochastic Volterra integral equations.As an application,we investigate the rate of convergence in the small time central limit theorem for the solution.
基金supported by the National Natural Science Foundation of China (11901184, 11771343)the Natural Science Foundation of Hunan Province (2020JJ5025)。
文摘In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.
文摘Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {B_t} are established.AMS Subject Classification. 60H05.
基金supported by the Natural Science Foundation of China(11901005,12071003)the Natural Science Foundation of Anhui Province(2008085QA20)。
文摘In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities.
文摘This paper is concerned with the existence and uniqueness of solution for a class of stochastic functional equation: X =φ(X), where φ: B → B and B is a Banach space consisted of all left-continuous, (■_t)-adapted processes. Also, the main result is applied to some S.D.E (or S.I.E.). And the authors adopted some of the results in current research in the models of stochastic control recently. This paper proves the ekistence and uniquence and uniqueness of solution for stochastic functional equation. A series of corollaries are deduced from the special examples of the theorems in this paper.
基金supported by an NSERC granta startup fund of University of Alberta
文摘This article attempts to give a short survey of recent progress on a class of elementary stochastic partial differential equations (for example, stochastic heat equations) driven by Gaussian noise of various covariance structures. The focus is on the existence and uniqueness of the classical (square integrable) solution (mild solution, weak solution). It is also concerned with the Feynman-Kac formula for the solution;Feynman-Kac formula for the moments of the solution;and their applications to the asymptotic moment bounds of the solution. It also briefly touches the exact asymptotics of the moments of the solution.
基金Partially supported by the ANR grant "Masterie" BLAN 012103Support by the CNCS grant "PN-II-ID-PCE-2011-3-0593"
文摘Using multiple stochastic integrals and the stochastic calculus for the frac-tional Brownian sheet, we define and we analyze the 2D-fractional stochastic currents.
文摘We introduce anticipating quadrant and symmetric integrals in the plane, and establish the associated chain rules which are the same as the deterministic ones. In particular, we deduce the relation between quadrant integrals, symmetric integral, and Skorohod integral with respect to two-parameter Wiener processes.