Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inv...The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3.展开更多
In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is...In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.展开更多
Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction erro...Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated 'true' NRCS is calculated from the simulated 'true' wind through the geophysical mode] function NSCAT2. The simulated background field is configured by adding a noise to the simulated 'true' wind with the non-divergence constraint. Also, the simulated 'measured' NRCS is formed by adding a noise to the simulated 'true' NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data.展开更多
Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced...Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.展开更多
In this paper, a regularization Newton method for mixed complementarity problem(MCP) based on the reformulation of MCP in [1] is proposed. Its global convergence is proved under the assumption that F is a P0-function....In this paper, a regularization Newton method for mixed complementarity problem(MCP) based on the reformulation of MCP in [1] is proposed. Its global convergence is proved under the assumption that F is a P0-function. The main feature of our algorithm is that a priori of the existence of an accumulation point for convergence need not to be assumed.展开更多
Crosswell seismic tomography can be used to study the lateral variation of reservoirs, reservoir properties and the dynamic movement of fluids. In view of the instability of crosswell seismic tomography, the gradient ...Crosswell seismic tomography can be used to study the lateral variation of reservoirs, reservoir properties and the dynamic movement of fluids. In view of the instability of crosswell seismic tomography, the gradient method was improved by introducing regularization, and a gradient regularization method is presented in this paper. This method was verified by processing numerical simulation data and physical model data.展开更多
In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional...In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional stability.Then,we give the optimal error bound for this inverse problem.Next,we use the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method to restore the stability of the ill-posed problem,and give corresponding error estimates under different regularization parameter selection rules.Finally,we verify the effectiveness of the method through numerical examples.展开更多
This paper presents anew regularization method for solving operator equations of the first kind; the convergence rate of the regularized solution is improved, as compared with the ordinary Tikhonov regularization.
Using a discretized finite difference method, a numerical model was developed to study the interaction of regular waves with a perforated breakwater. Considering a non-viscous, non-rotational fluid, the governing equa...Using a discretized finite difference method, a numerical model was developed to study the interaction of regular waves with a perforated breakwater. Considering a non-viscous, non-rotational fluid, the governing equations of Laplacian velocity potential were developed, and specific conditions for every single boundary were defined. The final developed model was evaluated based on an existing experimental result. The evaluated model was used to simulate the condition for various wave periods from 0.6 to 2 s. The reflection coefficient and transmission coefficient of waves were examined with different breakwater porosities, wave steepnesses, and angular frequencies. The results show that the developed model can suitably present the effect of the structural and hydraulic parameters on the reflection and transmission coefficients. It was also found that with the increase in wave steepness, the reflection coefficient increased logarithmically, while the transmission coefficient decreased logarithmically.展开更多
Nuclear Magnetic inversion is the basis of NMR Resonance (NMR) T2 logging interpretation. The regularization parameter selection of the penalty term directly influences the NMR T2 inversion result. We implemented b...Nuclear Magnetic inversion is the basis of NMR Resonance (NMR) T2 logging interpretation. The regularization parameter selection of the penalty term directly influences the NMR T2 inversion result. We implemented both norm smoothing and curvature smoothing methods for NMR T2 inversion, and compared the inversion results with respect to the optimal regular- ization parameters ((Xopt) which were selected by the dis- crepancy principle (DP), generalized cross-validation (GCV), S-curve, L-curve, and the slope of L-curve methods, respectively. The numerical results indicate that the DP method can lead to an oscillating or oversmoothed solution which is caused by an inaccurately estimated noise level. The (Xopt selected by the L-curve method is occa- sionally small or large which causes an undersmoothed or oversmoothed T2 distribution. The inversion results from GCV, S-curve and the slope of L-curve methods show satisfying inversion results. The slope of the L-curve method with less computation is more suitable for NMR T2 inversion. The inverted T2 distribution from norm smoothing is better than that from curvature smoothing when the noise level is high.展开更多
The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the es...The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. The effectiveness of the EFG method of solving the RLW equation is investigated by two numerical examples in this paper.展开更多
This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtain...This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method.展开更多
To overcome the shortcoming that the traditional minimum error threshold method can obtain satisfactory image segmentation results only when the object and background of the image strictly obey a certain type of proba...To overcome the shortcoming that the traditional minimum error threshold method can obtain satisfactory image segmentation results only when the object and background of the image strictly obey a certain type of probability distribution,one proposes the regularized minimum error threshold method and treats the traditional minimum error threshold method as its special case.Then one constructs the discrete probability distribution by using the separation between segmentation threshold and the average gray-scale values of the object and background of the image so as to compute the information energy of the probability distribution.The impact of the regularized parameter selection on the optimal segmentation threshold of the regularized minimum error threshold method is investigated.To verify the effectiveness of the proposed regularized minimum error threshold method,one selects typical grey-scale images and performs segmentation tests.The segmentation results obtained by the regularized minimum error threshold method are compared with those obtained with the traditional minimum error threshold method.The segmentation results and their analysis show that the regularized minimum error threshold method is feasible and produces more satisfactory segmentation results than the minimum error threshold method.It does not exert much impact on object acquisition in case of the addition of a certain noise to an image.Therefore,the method can meet the requirements for extracting a real object in the noisy environment.展开更多
Global in time weak solutions to the α-model regularization for the three dimensional Euler-Poisson equations are considered in this paper. We prove the existence of global weak solutions to α-model regularization f...Global in time weak solutions to the α-model regularization for the three dimensional Euler-Poisson equations are considered in this paper. We prove the existence of global weak solutions to α-model regularization for the three dimension compressible EulerPoisson equations by using the Fadeo-Galerkin method and the compactness arguments on the condition that the adiabatic constant satisfies γ >4/3.展开更多
To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method...To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.展开更多
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
基金Project supported by the National Natural Science Foundation of China(Grant No.41175025)
文摘The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3.
文摘In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.
基金supported by the National Natural Science Foundation of China (Grant No. 40775023)
文摘Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated 'true' NRCS is calculated from the simulated 'true' wind through the geophysical mode] function NSCAT2. The simulated background field is configured by adding a noise to the simulated 'true' wind with the non-divergence constraint. Also, the simulated 'measured' NRCS is formed by adding a noise to the simulated 'true' NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data.
基金supported by the Natural Science Foundation of China (Nos. 11971230, 12071215)the Fundamental Research Funds for the Central Universities(No. NS2018047)the 2019 Graduate Innovation Base(Laboratory)Open Fund of Jiangsu Province(No. Kfjj20190804)
文摘Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.
基金This subject is supported by the NSF of China (10171055,10226022) NSF of Shandong province(Y2003A02)
文摘In this paper, a regularization Newton method for mixed complementarity problem(MCP) based on the reformulation of MCP in [1] is proposed. Its global convergence is proved under the assumption that F is a P0-function. The main feature of our algorithm is that a priori of the existence of an accumulation point for convergence need not to be assumed.
文摘Crosswell seismic tomography can be used to study the lateral variation of reservoirs, reservoir properties and the dynamic movement of fluids. In view of the instability of crosswell seismic tomography, the gradient method was improved by introducing regularization, and a gradient regularization method is presented in this paper. This method was verified by processing numerical simulation data and physical model data.
基金supported by the National Natural Science Foundation of China(11961044)the Doctor Fund of Lan Zhou University of Technologythe Natural Science Foundation of Gansu Provice(21JR7RA214)。
文摘In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional stability.Then,we give the optimal error bound for this inverse problem.Next,we use the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method to restore the stability of the ill-posed problem,and give corresponding error estimates under different regularization parameter selection rules.Finally,we verify the effectiveness of the method through numerical examples.
文摘This paper presents anew regularization method for solving operator equations of the first kind; the convergence rate of the regularized solution is improved, as compared with the ordinary Tikhonov regularization.
文摘Using a discretized finite difference method, a numerical model was developed to study the interaction of regular waves with a perforated breakwater. Considering a non-viscous, non-rotational fluid, the governing equations of Laplacian velocity potential were developed, and specific conditions for every single boundary were defined. The final developed model was evaluated based on an existing experimental result. The evaluated model was used to simulate the condition for various wave periods from 0.6 to 2 s. The reflection coefficient and transmission coefficient of waves were examined with different breakwater porosities, wave steepnesses, and angular frequencies. The results show that the developed model can suitably present the effect of the structural and hydraulic parameters on the reflection and transmission coefficients. It was also found that with the increase in wave steepness, the reflection coefficient increased logarithmically, while the transmission coefficient decreased logarithmically.
基金funded by Shell International Exploration and Production Inc.(PT45371)the National Natural Science Foundation of China-China National Petroleum Corporation Petrochemical Engineering United Fund(U1262114)the National Natural Science Foundation of China(41272163)
文摘Nuclear Magnetic inversion is the basis of NMR Resonance (NMR) T2 logging interpretation. The regularization parameter selection of the penalty term directly influences the NMR T2 inversion result. We implemented both norm smoothing and curvature smoothing methods for NMR T2 inversion, and compared the inversion results with respect to the optimal regular- ization parameters ((Xopt) which were selected by the dis- crepancy principle (DP), generalized cross-validation (GCV), S-curve, L-curve, and the slope of L-curve methods, respectively. The numerical results indicate that the DP method can lead to an oscillating or oversmoothed solution which is caused by an inaccurately estimated noise level. The (Xopt selected by the L-curve method is occa- sionally small or large which causes an undersmoothed or oversmoothed T2 distribution. The inversion results from GCV, S-curve and the slope of L-curve methods show satisfying inversion results. The slope of the L-curve method with less computation is more suitable for NMR T2 inversion. The inverted T2 distribution from norm smoothing is better than that from curvature smoothing when the noise level is high.
基金supported by the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6110007)
文摘The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. The effectiveness of the EFG method of solving the RLW equation is investigated by two numerical examples in this paper.
基金supported by the National Natural Science Foundation of China (Grant No. 10871124)the Innovation Program of the Shanghai Municipal Education Commission,China (Grant No. 09ZZ99)
文摘This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method.
基金supported by the National Natural Science Foundations of China(Nos.61136002,61472324)the Natural Science Foundation of Shanxi Province(No.2014JM8331)
文摘To overcome the shortcoming that the traditional minimum error threshold method can obtain satisfactory image segmentation results only when the object and background of the image strictly obey a certain type of probability distribution,one proposes the regularized minimum error threshold method and treats the traditional minimum error threshold method as its special case.Then one constructs the discrete probability distribution by using the separation between segmentation threshold and the average gray-scale values of the object and background of the image so as to compute the information energy of the probability distribution.The impact of the regularized parameter selection on the optimal segmentation threshold of the regularized minimum error threshold method is investigated.To verify the effectiveness of the proposed regularized minimum error threshold method,one selects typical grey-scale images and performs segmentation tests.The segmentation results obtained by the regularized minimum error threshold method are compared with those obtained with the traditional minimum error threshold method.The segmentation results and their analysis show that the regularized minimum error threshold method is feasible and produces more satisfactory segmentation results than the minimum error threshold method.It does not exert much impact on object acquisition in case of the addition of a certain noise to an image.Therefore,the method can meet the requirements for extracting a real object in the noisy environment.
基金supported by National Science Foundation of China (11901020)Beijing Natural Science Foundation (1204026)the Science and Technology Project of Beijing Municipal Commission of Education China (KM202010005027)。
文摘Global in time weak solutions to the α-model regularization for the three dimensional Euler-Poisson equations are considered in this paper. We prove the existence of global weak solutions to α-model regularization for the three dimension compressible EulerPoisson equations by using the Fadeo-Galerkin method and the compactness arguments on the condition that the adiabatic constant satisfies γ >4/3.
文摘To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.