Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume cont...Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume contraction during cooling.In this paper,substantial field work was performed to study the geological characteristics of irregular columnar jointed basalt on the left bank dam foundation in the Baihetan Hydropower Station,where the columnar jointed rock mass is extensively exposed due to excavation.The quantitative measurements of the sizing of polygonal crack pattern of columnar joints and assessment of their degree of irregularity were summarized.Considering the irregularity of polygonal crack pattern,a modified Voronoi polygon(MVP)method was developed to model the special polygonal crack pattern of columnar joints.The new polygonal pattern obtained by the MVP method consists of a large number of irregular polygons,of which the degree of irregularity is consistent with the field measurement results.This method can reproduce the rapid evolution from an initial ideal regular hexagonal pattern to a final actual irregular polygonal pattern as the degree of irregularity increases.The compression tests of columnar jointed rock mass with different irregularity show that the geometric irregularity has a great influence on its mechanical properties.This numerical construction method provides a reliable way to reconstruct columnar joint structure with specific polygonal crack pattern,which is consistent with onsite columnar jointed basalt.展开更多
This study aims to reveal the macroscopic permanent deformation(PD)behavior and the internal structural evolution of construction and demolition waste(CDW)under loading.Firstly,the initial matric suction of CDW was me...This study aims to reveal the macroscopic permanent deformation(PD)behavior and the internal structural evolution of construction and demolition waste(CDW)under loading.Firstly,the initial matric suction of CDW was measured by the filter paper method.Secondly,the PD of CDW with different humidity and stress states was investigated by repeated load triaxial tests,and a comprehensive prediction model was established.Finally,the discrete element method was performed to analyze the internal structural evolution of CDW during deformation.These results showed that the VAN-GENUCHTEN model could describe the soil-water characteristic curve of CDW well.The PD increases with the increase of the deviator stress and the number of cyclic loading,but the opposite trend was observed when the initial matric suction and confining pressure increased.The proposed model in this study provides a satisfactory prediction of PD.The discrete element method could accurately simulate the macroscopic PD of CDW,and the shear force,interlock force and sliding content increase with the increase of deviator stress during the deformation.The research could provide useful reference for the deformation stability analysis of CDW under cyclic loading.展开更多
Due to rainfall infiltration,groundwater activity,geological processes,and natural erosion,soil often exhibits heterogeneity and unsaturation.Additionally,seismic events can compromise slope stability.Existing analyti...Due to rainfall infiltration,groundwater activity,geological processes,and natural erosion,soil often exhibits heterogeneity and unsaturation.Additionally,seismic events can compromise slope stability.Existing analytical solutions typically consider a single failure mode,leading to inaccurate slope stability assessments.This study analyzes the impact of matric suction through three nonlinear shear strength models and adopts a heterogeneous soil model where cohesion linearly increases with depth.An improved pseudo-dynamic method is used to account for seismic effects.Based on a three-dimensional(3D)trumpet-shaped rotational failure mechanism,a new framework is established to analyze the stability of 3D two-bench slopes in heterogeneous unsaturated soil under seismic effects.The internal energy dissipation rate and external power at failure are calculated,and the gravity increase method is introduced to derive an explicit expression for the safety factor(F_(s)).The results are compared with previously published results,demonstrating the effectiveness of the proposed method.Sensitivity analyses on different parameters are conducted,discussing the influence of various factors on F s.This study proposes a new formula for calculating the F_(s) of 3D two-bench slopes in heterogeneous unsaturated soil under seismic effects,providing a practical application for slope engineering.展开更多
基金Projects(51621006,51779251)supported by the National Natural Science Foundation of China。
文摘Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume contraction during cooling.In this paper,substantial field work was performed to study the geological characteristics of irregular columnar jointed basalt on the left bank dam foundation in the Baihetan Hydropower Station,where the columnar jointed rock mass is extensively exposed due to excavation.The quantitative measurements of the sizing of polygonal crack pattern of columnar joints and assessment of their degree of irregularity were summarized.Considering the irregularity of polygonal crack pattern,a modified Voronoi polygon(MVP)method was developed to model the special polygonal crack pattern of columnar joints.The new polygonal pattern obtained by the MVP method consists of a large number of irregular polygons,of which the degree of irregularity is consistent with the field measurement results.This method can reproduce the rapid evolution from an initial ideal regular hexagonal pattern to a final actual irregular polygonal pattern as the degree of irregularity increases.The compression tests of columnar jointed rock mass with different irregularity show that the geometric irregularity has a great influence on its mechanical properties.This numerical construction method provides a reliable way to reconstruct columnar joint structure with specific polygonal crack pattern,which is consistent with onsite columnar jointed basalt.
基金Project(52025085)supported by the National Science Fund for Distinguished Young Scholars,ChinaProjects(51927814,51878078)supported by the National Natural Science Foundation of China+3 种基金Project(2018-025)supported by the Training Program for High-level Technical Personnel in Transportation Industry,ChinaProject(CTKY-PTRC 2018-003)supported by the Design Theory,Method and Demonstration of Durability Asphalt Pavement Based on Heavy-duty Traffic Conditions in Shanghai Area,ChinaProject(2020RC4048)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(SJCX202001)supported by the Construction Project for Graduate Students of Changsha University of Science&Technology,China。
文摘This study aims to reveal the macroscopic permanent deformation(PD)behavior and the internal structural evolution of construction and demolition waste(CDW)under loading.Firstly,the initial matric suction of CDW was measured by the filter paper method.Secondly,the PD of CDW with different humidity and stress states was investigated by repeated load triaxial tests,and a comprehensive prediction model was established.Finally,the discrete element method was performed to analyze the internal structural evolution of CDW during deformation.These results showed that the VAN-GENUCHTEN model could describe the soil-water characteristic curve of CDW well.The PD increases with the increase of the deviator stress and the number of cyclic loading,but the opposite trend was observed when the initial matric suction and confining pressure increased.The proposed model in this study provides a satisfactory prediction of PD.The discrete element method could accurately simulate the macroscopic PD of CDW,and the shear force,interlock force and sliding content increase with the increase of deviator stress during the deformation.The research could provide useful reference for the deformation stability analysis of CDW under cyclic loading.
基金Project(51378510)supported by the National Natural Science Foundation of China。
文摘Due to rainfall infiltration,groundwater activity,geological processes,and natural erosion,soil often exhibits heterogeneity and unsaturation.Additionally,seismic events can compromise slope stability.Existing analytical solutions typically consider a single failure mode,leading to inaccurate slope stability assessments.This study analyzes the impact of matric suction through three nonlinear shear strength models and adopts a heterogeneous soil model where cohesion linearly increases with depth.An improved pseudo-dynamic method is used to account for seismic effects.Based on a three-dimensional(3D)trumpet-shaped rotational failure mechanism,a new framework is established to analyze the stability of 3D two-bench slopes in heterogeneous unsaturated soil under seismic effects.The internal energy dissipation rate and external power at failure are calculated,and the gravity increase method is introduced to derive an explicit expression for the safety factor(F_(s)).The results are compared with previously published results,demonstrating the effectiveness of the proposed method.Sensitivity analyses on different parameters are conducted,discussing the influence of various factors on F s.This study proposes a new formula for calculating the F_(s) of 3D two-bench slopes in heterogeneous unsaturated soil under seismic effects,providing a practical application for slope engineering.
基金supported by the support plan for the development of Marxist theoretical discipline in Shanghai in 2017(Marxist theory teaching research on“Young and Middle-aged Talents”project)In 2017,The special topic on“Chinese Citizens’Political Identity Since the 18th CPC National Congress”in the“Research on Xi Jinping’s Important Thoughts In The New Era”held by Shanghai International Studies UniversityThe research has been funded by the basic scientific research fee of the central colleges and universities