期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
Construction and application of pre-classified smooth semi-supervised twin support vector machine
1
作者 ZHANG Xiaodan QI Hongye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期564-572,共9页
In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabe... In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabeled samples. In S2TSVM, the addition of unlabeled samples can easily cause the classification hyper plane to deviate from the sample points. Then a centerdistance principle is proposed to pre-classify unlabeled samples, and a pre-classified S2TSVM (PS2TSVM) is proposed. Compared with S2TSVM, PS2TSVM not only improves the problem of the samples deviating from the classification hyper plane, but also improves the training speed. Then PS2TSVM is smoothed. After smoothing the model, the pre-classified smooth S2TSVM (PS3TSVM) is obtained, and its convergence is deduced. Finally, nine datasets are selected in the UCI machine learning database for comparison with other types of semi-supervised models. The experimental results show that the proposed PS3TSVM model has better classification results. 展开更多
关键词 SEMI-SUPERVISED twin support vector machine (twsvm) pre-classified center-distance SMOOTH
在线阅读 下载PDF
基于TWSVM算法的发动机故障识别方法 被引量:13
2
作者 柳长源 车路平 毕晓君 《内燃机学报》 EI CAS CSCD 北大核心 2019年第1期84-89,共6页
为了快速有效地诊断出汽油发动机故障,提出了一种基于孪生支持向量机(TWSVM)的发动机故障诊断方法.该方法利用HC、CO、CO2、O2和NOx共5种尾气参数值,并对其进行规范化处理,然后把这些数据作为特征向量,用于孪生支持向量机构成的多分类... 为了快速有效地诊断出汽油发动机故障,提出了一种基于孪生支持向量机(TWSVM)的发动机故障诊断方法.该方法利用HC、CO、CO2、O2和NOx共5种尾气参数值,并对其进行规范化处理,然后把这些数据作为特征向量,用于孪生支持向量机构成的多分类器中进行训练和测试,从而达到识别故障类别的目的.试验结果表明:采用孪生支持向量机分类方法比利用传统支持向量机具有更好的分类效果,且训练速度更快;在小样本数据情况下,故障诊断正确率可达到98.4%,能有效描述汽车尾气成分变化与发动机故障状态之间的复杂关系. 展开更多
关键词 汽油机 故障诊断 孪生支持向量机 汽车尾气 分类器 核函数
在线阅读 下载PDF
基于改进VMD和TWSVM的多点泄漏检测方法 被引量:8
3
作者 郎宪明 王佳政 +2 位作者 曹江涛 李平 蔡再洪 《振动与冲击》 EI CSCD 北大核心 2021年第17期271-278,共8页
针对管道同时发生多点泄漏时,各个泄漏点的声波信号相互叠加,影响泄漏声波传播规律,不能有效检测多点泄漏的问题,提出一种基于改进变分模态分解(variational mode decomposing,VMD)和双支持向量机(twin support vector machine,TWSVM)... 针对管道同时发生多点泄漏时,各个泄漏点的声波信号相互叠加,影响泄漏声波传播规律,不能有效检测多点泄漏的问题,提出一种基于改进变分模态分解(variational mode decomposing,VMD)和双支持向量机(twin support vector machine,TWSVM)的多点泄漏检测方法。由于VMD的分解模态个数影响多点泄漏特征提取的效果,采用误差能量函数自适应选取VMD分解本征模态函数个数;将多点泄漏声波信号经改进VMD消噪并进行多点泄漏声波信号特征值提取,组成特征向量;将特征向量作为TWSVM的输入,进行多点泄漏识别。结果表明,所提出的多点泄漏检测方法能有效检测多点泄漏,多点泄漏检测准确率达到98.4%。 展开更多
关键词 多点泄漏 变分模态分解 双支持向量机 误差能量函数
在线阅读 下载PDF
基于孪生数据信息的提高石油采收率技术智能决策
4
作者 张娜 王凌旭 +4 位作者 姚谋 安杰 苏升帅 张敏 蒲景阳 《西安石油大学学报(自然科学版)》 北大核心 2025年第4期40-45,58,共7页
针对当前提高石油采收率技术的传统人工筛选决策方法与现代数据分析决策方法各自的局限性,运用人工智能与数据分析技术,将领域专家知识和机器学习方法有机融合起来,建立基于孪生数据信息的提高石油采收率(EOR)智能决策系统。通过重构提... 针对当前提高石油采收率技术的传统人工筛选决策方法与现代数据分析决策方法各自的局限性,运用人工智能与数据分析技术,将领域专家知识和机器学习方法有机融合起来,建立基于孪生数据信息的提高石油采收率(EOR)智能决策系统。通过重构提高石油采收率数据信息并进行降噪提质,揭示不同EOR技术的驱油机理及油藏-流体适用条件;利用机器学习探究不同EOR油藏-流体参数权重,构建领域专家知识本体与机器学习推演的孪生数据信息融合与智能决策推理方法。通过Midway Sunset油藏案例验证了所建的基于孪生数据信息的EOR智能决策模型可靠性,可为老油田提高石油采收率技术快捷、科学、高效决策提供一定借鉴。 展开更多
关键词 采油技术智能决策 孪生数据信息 机器学习 支持向量机-SHAP 提高石油采收率
在线阅读 下载PDF
基于SPSO优化Multiple Kernel-TWSVM的滚动轴承故障诊断 被引量:7
5
作者 徐冠基 曾柯 柏林 《振动.测试与诊断》 EI CSCD 北大核心 2019年第5期973-979,1130,共8页
双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式... 双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式全局核函数方法组成双核函数来改进TWSVM以提高其泛化能力和分类性能,并采用简化粒子群优化(simple particle swarm optimization,简称SPSO)方法来对权值和参数进行优化,提出了SPSO优化Multiple Kernel-TWSVM模型,将该模型应用到滚动轴承故障诊断模式识别中。实验结果表明,双核TWSVM比单核TWSVM和反向传播(back propagation,简称BP)神经网络具有更高的分类准确率。 展开更多
关键词 滚动轴承 故障诊断 相空间重构 简化粒子群优化 双核双子支持向量机
在线阅读 下载PDF
一种无约束凸规划多平面修正TWSVM 被引量:1
6
作者 徐金宝 业巧林 +1 位作者 业宁 吴美红 《计算机工程与应用》 CSCD 北大核心 2010年第36期29-33,共5页
对支持向量机(Twin Support Vector Machine,TWSVM)的优化思想源于基于广义特征值近似支持向量机(ProximalSVM based on Generalized Eigenvalues,GEPSVM)。该算法将传统SVM问题分解为两个凸规划问题,使得训练速度缩减到原来的1/4。对TW... 对支持向量机(Twin Support Vector Machine,TWSVM)的优化思想源于基于广义特征值近似支持向量机(ProximalSVM based on Generalized Eigenvalues,GEPSVM)。该算法将传统SVM问题分解为两个凸规划问题,使得训练速度缩减到原来的1/4。对TWSVM做了修正,基于新的优化准则设计了一种特殊TWSVM(GTWSVM),在此基础上,提出了快速GTWSVM(FGTWSVM),其将GTWSVM转换为无约束凸规划问题求解。该算法在保证得到与TWSVM相当的分类性能以及较快的计算速度的同时,还减少了输入空间的特征数以及内存占用。对于非线性问题,FGTWSVM可以减少核函数数目。 展开更多
关键词 对支持向量机(twsvm) 近似支持向量机(GEPSVM) 多类问题 无约束凸规划 特征数 核函数数目
在线阅读 下载PDF
Twin-SVM和Twin-KSVC标志物检测与分类方法 被引量:2
7
作者 栾咏红 刘全 《计算机工程与设计》 北大核心 2016年第12期3306-3310,共5页
针对交通标志中禁令标志和指示标志的检测和分类难题,提出一种基于Twin-SVM和Twin-KSVC的交通标志检测与分类方法。对交通标志图像的红色、蓝色和亮度3个通道进行光照归一化处理;在这3个通道上提取Haar-like特征,构建特征向量;采用Twin-... 针对交通标志中禁令标志和指示标志的检测和分类难题,提出一种基于Twin-SVM和Twin-KSVC的交通标志检测与分类方法。对交通标志图像的红色、蓝色和亮度3个通道进行光照归一化处理;在这3个通道上提取Haar-like特征,构建特征向量;采用Twin-SVM方法进行交通标志检测过程的特征训练与验证,采用Twin-KSVC方法进行交通标志分类过程的特征训练与验证。实验采用实测数据对算法进行测试与评价,实验结果表明,该方法可以有效地检测和识别常见的20类禁令和指示交通标志。 展开更多
关键词 交通标志 交通标志检测 交通标志分类 支持向量机 HAAR-LIKE特征 成对支持向量机
在线阅读 下载PDF
基于SPSO-WK-TWSVM的复合材料层合板损伤辨识方法 被引量:3
8
作者 刘小峰 王邦昕 +1 位作者 艾帆 韦代平 《振动与冲击》 EI CSCD 北大核心 2021年第15期290-295,302,共7页
针对复合材料层合板的基体裂纹损伤与脱层损伤的不易区分辨识的问题,采用Lamb波对层合板进行损伤检测,对接收到的传感信号进行特征提取与筛选,创新性地引入加权核双子支持向量基(weighted kernels-twin support vector machine,WK-TWSVM... 针对复合材料层合板的基体裂纹损伤与脱层损伤的不易区分辨识的问题,采用Lamb波对层合板进行损伤检测,对接收到的传感信号进行特征提取与筛选,创新性地引入加权核双子支持向量基(weighted kernels-twin support vector machine,WK-TWSVM)的机器学习方法对基体裂纹与脱层损伤进行自动分类识别。为了进一步提高损伤辨识精度,采用简化粒子群优化(simple particle swarm optimization,SPSO)算法对WK-TWSVM的核函数权值及模型参数进行了寻优处理,并与其他粒子群优化算法就行了分析比较。试验分析结果表明,基于Lamb波的SPSO-WK-TWSVM复合材料层合板损伤辨识方法能够对复合材料层合板基体裂纹与脱层损伤进行准确的自动识别,识别精度明显高于其他TWSVM优化算法及传统的机器学习方法。 展开更多
关键词 复合材料层合板 LAMB波 损伤分类辨识 简化粒子群优化 双子支持向量基
在线阅读 下载PDF
参数协同优化的TSVR增强型TSK模糊系统
9
作者 王维 赵云龙 +1 位作者 彭小玉 潘小东 《计算机科学》 北大核心 2025年第7期75-81,共7页
Takagi-Sugeno-Kang(TSK)模糊系统作为特殊的非线性回归系统,能够解决机器学习任务,但其处理高维问题的效果并不理想,且对于规则的确定和调整较为困难。为了优化该系统,将沿用模糊IF-THEN规则。首先运用模糊C均值聚类对数据集进行划分,... Takagi-Sugeno-Kang(TSK)模糊系统作为特殊的非线性回归系统,能够解决机器学习任务,但其处理高维问题的效果并不理想,且对于规则的确定和调整较为困难。为了优化该系统,将沿用模糊IF-THEN规则。首先运用模糊C均值聚类对数据集进行划分,将数据点嵌入表征点到模糊聚类中心隶属度的空间,进而利用孪生支持向量回归机(TSVR)确定两个回归平面,从而得到回归值。考虑到不同数据集适应不同的关键参数,如聚类数等,采用遗传算法(GA)进行统一参数寻优,简化了领域知识的先验设置,形成了TSVR-GA-TSK(TG-TSK)模糊系统。实验结果表明,相比于经典回归算法和典型的TSK模糊系统,TG-TSK模糊系统具有良好的回归精度和鲁棒性,在Nemenyi检验的两两比较中具有显著优势。 展开更多
关键词 TSK模糊系统 TSVR 遗传算法 协同优化 回归任务
在线阅读 下载PDF
齿轮箱故障非线性特征测度及状态TWSVM辨识研究 被引量:9
10
作者 曾柯 柏林 《振动与冲击》 EI CSCD 北大核心 2018年第15期179-184,198,共7页
针对齿轮箱振动的非线性,利用非线性特征测度的方法提取齿轮箱振动信号的故障特征。并利用双子支持向量机(TWSVM)对齿轮箱故障类别的辨识性能进行研究。TWSVM努力构造两个非平行的超平面来实现分类,它比支持向量机(SVM)针对多分类问题... 针对齿轮箱振动的非线性,利用非线性特征测度的方法提取齿轮箱振动信号的故障特征。并利用双子支持向量机(TWSVM)对齿轮箱故障类别的辨识性能进行研究。TWSVM努力构造两个非平行的超平面来实现分类,它比支持向量机(SVM)针对多分类问题具有更好的样本不均衡适应性,并且分类性能优势明显。对齿轮箱故障类别辨识的实验表明,与传统的SVM和BP神经网络算法相比较,TWSVM具有更高的分类准确率。 展开更多
关键词 齿轮箱 故障诊断 非线性特征 twsvm
在线阅读 下载PDF
基于TWSVM的图像分类 被引量:9
11
作者 朱志宾 丁世飞 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期8-14,共7页
图像分类技术是图像数据处理中最重要的技术之一.支持向量机是基于统计学习理论而提出的机器学习算法,在样本数少的时候能达到很好的分类效果.孪生支持向量机是基于支持向量机而提出来的,其性能优于支持向量机.通过提取彩色图像的颜色... 图像分类技术是图像数据处理中最重要的技术之一.支持向量机是基于统计学习理论而提出的机器学习算法,在样本数少的时候能达到很好的分类效果.孪生支持向量机是基于支持向量机而提出来的,其性能优于支持向量机.通过提取彩色图像的颜色特征与纹理特征,利用孪生支持向量机与支持向量机对这些特征向量进行分类,孪生支持向量机的分类准确率与稳定性都高于支持向量机. 展开更多
关键词 图像分类 支持向量机 孪生支持向量机 特征提取
在线阅读 下载PDF
改进AFSA算法优化TWSVM的火焰识别方法 被引量:9
12
作者 高一锴 彭力 徐龙壮 《计算机工程与应用》 CSCD 北大核心 2021年第8期204-213,共10页
为了快速有效地识别火灾火焰图像,提出了一种基于改进人工鱼群算法(IAFSA)的孪生支持向量机(TWSVM)的火焰识别方法。该方法根据RGB-YCbCr混合颜色空间模型中火焰像素的分布特点对火焰图像进行分割,并在此基础上提取火焰图像的相关特征;... 为了快速有效地识别火灾火焰图像,提出了一种基于改进人工鱼群算法(IAFSA)的孪生支持向量机(TWSVM)的火焰识别方法。该方法根据RGB-YCbCr混合颜色空间模型中火焰像素的分布特点对火焰图像进行分割,并在此基础上提取火焰图像的相关特征;采用人工鱼群算法(AFSA)搜索TWSVM最优惩罚参数与核参数,并在AFSA算法中利用基于聚类的鱼群初始化方法来获得均匀的初始鱼群,同时采取自适应参数来调整人工鱼群的视觉范围和移动步长,另外在原有的三种行为的基础上提出了两种新的行为:跳跃行为和淘汰重生行为,提高了鱼群算法的寻优效率和求解精度;将提取的火焰各个特征量作为训练样本输入TWSVM模型进行训练;将待测试样本输入TWSVM模型进行分类识别。实验结果表明:相对于深度卷积神经网络VGGNet模型、Fast R-CNN算法、YOLO算法、传统支持向量机(SVM)、Grid-TWSVM、GA-TWSVM、PSO-TWSVM、FOA-TWSVM、GSO-TWSVM、AFSA-TWSVM,所提出的基于改进人工鱼群算法的孪生支持向量机的方法有效地提高了火焰识别准确率和实时性,解决了TWSVM在火焰识别时参数选择困难、常用参数寻优算法寻优时间长等问题。 展开更多
关键词 孪生支持向量机 改进人工鱼群算法 火焰识别 参数优化 RGB-YCbCr混合颜色空间模型
在线阅读 下载PDF
基于APSO和TWSVM的特高拱坝变形预测模型 被引量:15
13
作者 张才溢 傅蜀燕 +2 位作者 欧斌 胡孟凡 王春华 《水利水电科技进展》 CSCD 北大核心 2023年第4期46-51,共6页
为挖掘混凝土大坝变形监测数据与各影响因素之间复杂的非线性关系,提高特高拱坝变形预测精度,在孪生支持向量机(TWSVM)模型基础上,引入位置因子与速度因子,运用自适应粒子群优化(APSO)算法进行参数优化,构建了特高拱坝变形的APSO-TWSVM... 为挖掘混凝土大坝变形监测数据与各影响因素之间复杂的非线性关系,提高特高拱坝变形预测精度,在孪生支持向量机(TWSVM)模型基础上,引入位置因子与速度因子,运用自适应粒子群优化(APSO)算法进行参数优化,构建了特高拱坝变形的APSO-TWSVM预测模型。实例验证结果表明,该模型可有效挖掘拱坝变形与影响因子间复杂的非线性关系,模型运算速度和精度均比传统SVM模型有明显提升。 展开更多
关键词 特高拱坝 变形预测 孪生支持向量机 自适应粒子群优化算法
在线阅读 下载PDF
Robust least squares projection twin SVM and its sparse solution 被引量:1
14
作者 ZHOU Shuisheng ZHANG Wenmeng +1 位作者 CHEN Li XU Mingliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期827-838,共12页
Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsi... Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly. 展开更多
关键词 OUTLIERS robust least squares projection twin support vector machine(R-LSPTSVM) low-rank approximation sparse solution
在线阅读 下载PDF
基于TWSVM和模糊的木质采暖地板蓄热温度预测模型
15
作者 曹正彬 刘晓平 +3 位作者 杜光月 褚鑫 刘大伟 周玉成 《林业科学》 EI CAS CSCD 北大核心 2018年第11期45-52,共8页
【目的】围绕木质地板蓄热特性,针对木质地板蓄热后生成的温度场分布建立基于孪生支持向量机(TWSVM)和模糊算法的温度组合预测模型,为后续研究木质地板的蓄热规律提供有效分析手段。【方法】首先,将加热到设定温度的木质地板样本推送至... 【目的】围绕木质地板蓄热特性,针对木质地板蓄热后生成的温度场分布建立基于孪生支持向量机(TWSVM)和模糊算法的温度组合预测模型,为后续研究木质地板的蓄热规律提供有效分析手段。【方法】首先,将加热到设定温度的木质地板样本推送至地采暖地板蓄热性能检测仪器的检测腔内自由放热,利用仪器内呈多层环状分布的温度传感器阵列在时间和空间维度上动态提取温度值,并进行滤波降噪和归一化处理。其次,针对建模数据过多导致的TWSVM计算复杂度迅速膨胀问题,将试验数据均匀分块,每个分块数据中的验证集样本随机提取,剩余为训练集样本,采用TWSVM分别训练每个训练集样本,并用对应样本中的验证集进行泛化性验证,运用网格搜索法对TWSVM模型的核函数参数σ、惩罚参数γ和松弛因子ξ进行寻优。最后,基于模糊原理,对验证样本的输入空间构建高斯隶属度函数,并应用隶属度函数将模型预测结果进行模糊叠加,叠加后的输出作为模型最终训练结果。【结果】基于模糊的TWSVM方法预测时间维度下不同样本温度值的最大拟合度为99.59%,最小为98.92%,最长建模时间为186.90 s,最短建模时间为64.39 s;预测空间维度下不同样本温度值的最大拟合度为99.23%,最小为98.96%,最长建模时间为274.37 s,最短建模时间为93.30 s。【结论】TWSVM在计算中涉及矩阵求逆问题,适合对维数较小的数据样本进行建模,由于本研究木质地板蓄热特性需要的温度数据量较大,因此采用TWSVM直接对该试验数据进行建模具有较大局限性;引入模糊方法后,先将温度数据分别在时间和空间维度上分割成多个小的训练样本,然后对每个训练样本分别采用TWSVM建模和训练,根据模糊规则,以每个温度点在模糊函数上的隶属度叠加值来确定最终预测结果,可提高TWSVM方法建模的适应范围,并充分发挥其快速性和泛化性优势。 展开更多
关键词 地采暖地板 蓄热规律 孪生支持向量机(twsvm) 模糊
在线阅读 下载PDF
结构化最大间隔双支持向量机在股票预测中的应用 被引量:4
16
作者 林明松 杨晓梅 杨志霞 《计算机工程与应用》 CSCD 北大核心 2024年第11期346-355,共10页
股票价格受政策、宏观经济以及公司经营状况等多方因素的影响,且各因素之间存在较高的相关性,因此股票数据存在的高噪声、非平稳等特性使得股票预测充满困难。为了减少数据中存在的噪声对股价预测准确性的影响,基于马氏距离的类间隔可分... 股票价格受政策、宏观经济以及公司经营状况等多方因素的影响,且各因素之间存在较高的相关性,因此股票数据存在的高噪声、非平稳等特性使得股票预测充满困难。为了减少数据中存在的噪声对股价预测准确性的影响,基于马氏距离的类间隔可分性,提出了结构化最大间隔双支持向量机,其分别针对正类样本和负类样本,寻找两个非平行的超平面,使每一类样本离本类样本的欧式距离尽可能小,同时离异类超平面的马氏距离尽可能大。8组基准数据集的实验结果表明,该方法在含噪声数据的分类问题上具有稳定的准确率,从而提升了模型的预测性能和抗噪能力。同时将其应用到股票涨跌趋势预测中,通过对上证综指、上证A指、上证380指数以及中国平安等14只股票实证分析的结果表明,相较于其他对比模型,结构化最大间隔双支持向量机表现出了较好的预测结果,具有一定的实用价值。 展开更多
关键词 分类问题 双支持向量机 数据结构 马氏距离 股票预测
在线阅读 下载PDF
基于优化TQWT及孪生SVM的有载分接开关机械故障诊断 被引量:3
17
作者 余长厅 黎大健 +2 位作者 陈梁远 张磊 赵坚 《高压电器》 CAS CSCD 北大核心 2024年第10期110-118,共9页
为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish s... 为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。 展开更多
关键词 有载分接开关 机械故障 振动信号 品质因数可调小波变换 人工鱼群算法 孪生支持向量机
在线阅读 下载PDF
基于传感信号采集的电控发动机振动故障监测方法 被引量:2
18
作者 马晓 郑晅 柴艳娜 《传感技术学报》 CAS CSCD 北大核心 2024年第4期675-681,共7页
通过调理振动信号可以更高效地监测振动故障。为此,提出基于传感信号采集的电控发动机振动故障监测方法。首先,搭建电控发电机传感信号采集与处理架构,通过放大传感信号增益、滤波和转换信号模数的方式处理待监测信号,为提高监测准确性... 通过调理振动信号可以更高效地监测振动故障。为此,提出基于传感信号采集的电控发动机振动故障监测方法。首先,搭建电控发电机传感信号采集与处理架构,通过放大传感信号增益、滤波和转换信号模数的方式处理待监测信号,为提高监测准确性奠定可靠的数据基础。通过小波包分解与重构,获取信号的时域参数和小波能谱熵,并构建三维特征量。然后,利用“一对一”分解策略优化孪生支持向量机,构造多元分类器,使其更适用于振动故障监测这一多类别分类问题,再输入待监测信号的特征量,通过确定故障类别实现持续性监测。仿真结果表明:该方法训练耗时的最大值仅为897 ms,对于转子摩擦振动、不平衡振动等5种类型故障的监测准确率始终在97%以上,在缩减训练样本后准确率仍保持在90%以上。 展开更多
关键词 信号与信息处理 振动故障监测 传感信号采集 电控发动机 信号调理 信号转换 小波能谱熵 孪生支持向量机
在线阅读 下载PDF
基于数字孪生的铣刀磨损状态识别方法研究
19
作者 水星 容芷君 +2 位作者 但斌斌 何强鉴 杨鑫 《组合机床与自动化加工技术》 北大核心 2024年第9期20-24,共5页
实时精准地监测铣刀磨损状态对于提高加工质量与加工效率具有重要意义,提出一种基于数字孪生的铣刀磨损状态识别方法,该方法通过结合VMD-MPE特征提取方法和GA-SVM状态识别模型构建数字孪生体对铣刀磨损状态进行实时监测。首先,利用变分... 实时精准地监测铣刀磨损状态对于提高加工质量与加工效率具有重要意义,提出一种基于数字孪生的铣刀磨损状态识别方法,该方法通过结合VMD-MPE特征提取方法和GA-SVM状态识别模型构建数字孪生体对铣刀磨损状态进行实时监测。首先,利用变分模态分解算法(VMD)分解铣刀振动信号得到包含磨损状态信息的模态分量;其次,引入多尺度排列熵(MPE)从包含磨损状态信息的模态分量中提取铣刀的非线性动力学特征,并取各有效模态分量的多尺度排列熵平均值作为特征矩阵;最后,通过遗传算法(GA)优化支持向量机(SVM)构建铣刀磨损状态识别模型。实验结果表明,所构建的数字孪生体具有良好识别效果,其识别精度可达97.33%。 展开更多
关键词 数字孪生 刀具磨损 状态识别 变分模态分解 多尺度排列熵 支持向量机
在线阅读 下载PDF
近邻密度辅助模糊优化孪生支持向量机的钢板表面缺陷分类 被引量:1
20
作者 侯政通 胡鹰 +1 位作者 乔磊明 邓志飞 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期1115-1126,共12页
为提升钢板表面缺陷分类精度,提出一种选择性弱化样本的分类模型。首先,在图像预处理阶段引入显著性检测算法来减少二值化后图像出现失真的影响;其次,为了降低不利的边缘样本点对模型的影响,同时又能提高有利的边缘样本点对模型的贡献,... 为提升钢板表面缺陷分类精度,提出一种选择性弱化样本的分类模型。首先,在图像预处理阶段引入显著性检测算法来减少二值化后图像出现失真的影响;其次,为了降低不利的边缘样本点对模型的影响,同时又能提高有利的边缘样本点对模型的贡献,构造了一种新的密度模糊隶属度函数对样本进行权重赋值;最后,在孪生支持向量机(TWSVM)的基础上,将构造的密度模糊隶属度函数作为优化条件嵌入模型内,提出了近邻密度辅助模糊优化的TWSVM算法,以提高分类效果。在数据集NEU上的实验结果表明,引入显著性检测算法后,重新设计的特征在整体准确率上提高了1.66%,同时采用优化后的算法进行缺陷分类,准确率达到98.33%,进一步提高了分类性能。 展开更多
关键词 图像处理 显著性检测 缺陷分类 孪生支持向量机 密度函数 K近邻
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部