Spiking neural P systems with anti-spikes (ASN P systems) are variant forms of spiking neural P systems, which are inspired by inhibitory impulses/spikes or inhibitory synapses. The typical feature of ASN P systems ...Spiking neural P systems with anti-spikes (ASN P systems) are variant forms of spiking neural P systems, which are inspired by inhibitory impulses/spikes or inhibitory synapses. The typical feature of ASN P systems is when a neuron contains both spikes and anti-spikes, spikes and anti-spikes wil immediately annihilate each other in a maximal way. In this paper, a restricted variant of ASN P systems, cal ed ASN P systems without anni-hilating priority, is considered, where the annihilating rule is used as the standard rule, i.e., it is not obligatory to use in the neuron associated with both spikes and anti-spikes. If the annihilating rule is used in a neuron, the annihilation wil consume one time unit. As a result, such systems using two categories of spiking rules (identified by (a, a) and (a,a^-)) can achieve Turing completeness as number accepting devices.展开更多
During maintainability demonstration,the maintenance time for complex systems consisting of mixed technologies generally conforms to a mixture distribution.However existing maintainability standards and guidance do no...During maintainability demonstration,the maintenance time for complex systems consisting of mixed technologies generally conforms to a mixture distribution.However existing maintainability standards and guidance do not explain explicitly how to deal with this situation.This paper develops a comprehensive maintainability demonstration method for complex systems with a mixed maintenance time distribution.First of all,a K-means algorithm and an expectation-maximization(EM)algorithm are used to partition the maintenance time data for all possible clusters.The Bayesian information criterion(BIC)is then used to choose the optimal model.After this,the clustering results for equipment are obtained according to their degree of membership.The degree of similarity for the maintainability of different kinds of equipment is then determined using the projection method.By using a Bootstrap method,the prior distribution is obtained from the maintenance time data for the most similar equipment.Then,a test method based on Bayesian theory is outlined for the maintainability demonstration.Finally,the viability of the proposed approach is illustrated by means of an example.展开更多
基金supported by the National Natural Science Foundation of China(6103300361100145+1 种基金91130034)the China Postdoctoral Science Foundation(2014M550389)
文摘Spiking neural P systems with anti-spikes (ASN P systems) are variant forms of spiking neural P systems, which are inspired by inhibitory impulses/spikes or inhibitory synapses. The typical feature of ASN P systems is when a neuron contains both spikes and anti-spikes, spikes and anti-spikes wil immediately annihilate each other in a maximal way. In this paper, a restricted variant of ASN P systems, cal ed ASN P systems without anni-hilating priority, is considered, where the annihilating rule is used as the standard rule, i.e., it is not obligatory to use in the neuron associated with both spikes and anti-spikes. If the annihilating rule is used in a neuron, the annihilation wil consume one time unit. As a result, such systems using two categories of spiking rules (identified by (a, a) and (a,a^-)) can achieve Turing completeness as number accepting devices.
基金supported by the National Defense Pre-research Funds(9140A27010215JB34422)
文摘During maintainability demonstration,the maintenance time for complex systems consisting of mixed technologies generally conforms to a mixture distribution.However existing maintainability standards and guidance do not explain explicitly how to deal with this situation.This paper develops a comprehensive maintainability demonstration method for complex systems with a mixed maintenance time distribution.First of all,a K-means algorithm and an expectation-maximization(EM)algorithm are used to partition the maintenance time data for all possible clusters.The Bayesian information criterion(BIC)is then used to choose the optimal model.After this,the clustering results for equipment are obtained according to their degree of membership.The degree of similarity for the maintainability of different kinds of equipment is then determined using the projection method.By using a Bootstrap method,the prior distribution is obtained from the maintenance time data for the most similar equipment.Then,a test method based on Bayesian theory is outlined for the maintainability demonstration.Finally,the viability of the proposed approach is illustrated by means of an example.