期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
An expert system for diagnosing fire-caused damages to reinforced-concrete tunnel lining 被引量:1
1
作者 MANSOOR Yousif A. ZHANG Zhi-qiang 《Journal of Chongqing University》 CAS 2013年第1期16-26,共11页
During the last four decades, reinforced-concrete structure failures have been happening widely for many reasons, such as increased service loads, war accidents, fire, and durability problems. The economic losses due ... During the last four decades, reinforced-concrete structure failures have been happening widely for many reasons, such as increased service loads, war accidents, fire, and durability problems. The economic losses due to those failures are very high. An expert system is an interactive computer-based decision tool that uses both facts and heuristics to solve difficult problems based on knowledge acquired from experts. To realize these requirements, a logic programming visual basic language is used together with visual diagnosis. The expert system, Diagnosis of Fire-Caused Damages to Reinforced-Concrete Tunnel Lining (DFCDRCTL) was developed in this work for diagnosing the annual damages caused by fire. The program is used as an alternative of a human expert to make annual technical decisions in diagnosing fire damages at the second reinforced-concrete tunnel lining segment. It is concluded that the proposed DFCDRCTL expert system is easy to use, and is fast and helpful for engineers. 展开更多
关键词 expert system fire damage of reinforced concrete tunnel lining damage
在线阅读 下载PDF
Time-dependent safety of lining structures of circular tunnels in weak rock strata 被引量:8
2
作者 Baoguo Liu Yu Song Zhaofei Chu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期323-334,共12页
Following tunnel excavation and lining completion,fractured surrounding rock deforms gradually over time;this results in a time-dependent evolution of the pressure applied to the lining structure by the surrounding ro... Following tunnel excavation and lining completion,fractured surrounding rock deforms gradually over time;this results in a time-dependent evolution of the pressure applied to the lining structure by the surrounding rock.Thus,the safety of the tunnel lining in weak strata is strongly correlated with time.In this study,we developed an analytical method for determining the time-dependent pressure in the surrounding rock and lining structure of a circular tunnel under a hydrostatic stress field.Under the proposed method,the stress–strain relationship of the fractured surrounding rock is assumed to conform to that of the Burgers viscoelastic component,and the lining structure is assumed to be an elastomer.Based on these assumptions,the viscoelastic deformation of the surrounding rock,the elastic deformation of the lining structure,and the coordinated deformation between the surrounding rock and lining structure were derived.The proposed analytical method,which employs a time-dependent safety coefficient,was subsequently used to estimate the durability of the lining structure of the Foling Tunnel in China.The derived attenuation curve of the safety coefficient with respect to time can assist engineers in predicting the remaining viable life of the lining structure.Unlike existing analytical methods,the method derived in this study considers the time dependency of the interaction between the surrounding rock and tunnel lining;hence,it is more suitable for the evaluation of lining lifetime. 展开更多
关键词 tunnel lining Surrounding rock pressure Rheological characteristics Weak rock strata Time-dependent safety
在线阅读 下载PDF
Rock Pressure on Tunnel with Shallow Depth in Geologically Inclined Bedding Strata 被引量:1
3
作者 周晓军 李泽龙 +1 位作者 杨昌宇 高扬 《Journal of Southwest Jiaotong University(English Edition)》 2006年第1期52-62,共11页
The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding ... The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding strata as well as the internal friction angle of bedding plane and its cohesion all exert an influence upon the magnitude of the asymmetric rock pressure applied to tunnel. The feature that rock pressure applied to tunnel structure varies with the incUnation angle of bedding strata is discussed, At last, the safety factor, which is utilized to evaluate the working state of tunnel lining structure, is calculated for both symmetric and asymmetric lining structures. The calculation results elucidate that the asymmetric tunnel structure can be more superior to bear rock pressure in comparison with the symmetric one and should be adopted in engineering as far as possible. 展开更多
关键词 Rock pressure tunnel lining structure Inclined bedding strata Cohesion of bedding Internal fi'iction angle Safety oftunnel structure
在线阅读 下载PDF
Heteromaterial-gate line tunnel field-effect transistor based on Si/Ge heterojunction
4
作者 Shuqin Zhang Renrong Liang +2 位作者 Jing Wang Zhen Tan Jun Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期557-562,共6页
A Si/Ge heterojunction line tunnel field-effect transistor (LTFET) with a symmetric heteromaterial gate is proposed. Compared to single-material-gate LTFETs, the heteromaterial gate LTFET shows an off-state leakage ... A Si/Ge heterojunction line tunnel field-effect transistor (LTFET) with a symmetric heteromaterial gate is proposed. Compared to single-material-gate LTFETs, the heteromaterial gate LTFET shows an off-state leakage current that is three orders of magnitude lower, and steeper subthreshold characteristics, without degradation in the on-state current. We reveal that these improvements are due to the induced local potential barrier, which arises from the energy-band profile modulation effect. Based on this novel structure, the impacts of the physical parameters of the gap region between the pocket and the drain, including the work-function mismatch between the pocket gate and the gap gate, the type of dopant, and the doping concentration, on the device performance are investigated. Simulation and theoretical calculation results indicate that the gap gate material and n-type doping level in the gap region should be optimized simultaneously to make this region fully depleted for further suppression of the off-state leakage current. 展开更多
关键词 line tunnel field-effect transistor heteromaterial gate fully depleted
在线阅读 下载PDF
Design and investigation of dopingless double-gate line tunneling transistor: Analog performance, linearity, and harmonic distortion analysis
5
作者 Hui-Fang Xu Xin-Feng Han Wen Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期556-565,共10页
The tunnel field-effect transistor (TFET) is proposed by using the advantages of dopingless and line-tunneling technology. The line tunneling is created due to the fact that the gate electric field is aligned with the... The tunnel field-effect transistor (TFET) is proposed by using the advantages of dopingless and line-tunneling technology. The line tunneling is created due to the fact that the gate electric field is aligned with the tunneling direction, which dramatically enhances tunneling area and tunneling current. Moreover, the effects of the structure parameters such as the length between top gate and source electrode, the length between top gate and drain electrode, the distance between bottom gate and drain electrode, and the metal position on the on-state current, electric field and energy band are investigated and optimized. In addition, analog/radio-frequency performance and linearity characteristics are studied. All results demonstrate that the proposed device not only enhances the on/of current ratio and reduces the subthreshold swing, but also offers eight times improvement in cut-off frequency and gain band product as compared with the conventional point tunneling dopingless TFET, at the same time;it shows better linearity and small distortions. This proposed device greatly enhances the potential of applications in dopingless TFET. 展开更多
关键词 dopingless tunnel field effect transistor line tunneling lincarity parameters
在线阅读 下载PDF
Simulation study of device physics and design of GeOI TFET with PNN structure and buried layer for high performance 被引量:1
6
作者 Bin Wang Sheng Hu +3 位作者 Yue Feng Peng Li Hui-Yong Hu Bin Shu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期473-478,共6页
Large threshold voltage and small on-state current are the main limitations of the normal tunneling field effect transistor (TFET). In this paper, a novel TFET with gate-controlled P+N+N+ structure based on partially ... Large threshold voltage and small on-state current are the main limitations of the normal tunneling field effect transistor (TFET). In this paper, a novel TFET with gate-controlled P+N+N+ structure based on partially depleted GeOI (PD-GeOI) substrate is proposed. With the buried P+-doped layer (BP layer) introduced under P+N+N+ structure, the proposed device behaves as a two-tunneling line device and can be shut off by the BP junction, resulting in a high on-state current and low threshold voltage. Simulation results show that the on-state current density Ion of the proposed TFET can be as large as 3.4 × 10^−4 A/μm, and the average subthreshold swing (SS) is 55 mV/decade. Moreover, both of Ion and SS can be optimized by lengthening channel and buried P+ layer. The off-state current density of TTP TFET is 4.4 × 10^−10 A/μm, and the threshold voltage is 0.13 V, showing better performance than normal germanium-based TFET. Furthermore, the physics and device design of this novel structure are explored in detail. 展开更多
关键词 Ge-based TFET two line tunneling paths point tunneling on-state current density
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部