期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
CRF与规则相结合的医学病历实体识别 被引量:47
1
作者 栗伟 赵大哲 +2 位作者 李博 彭新茗 刘积仁 《计算机应用研究》 CSCD 北大核心 2015年第4期1082-1086,共5页
针对电子病历结构化中命名实体识别困难的问题,提出了一种基于CRF与规则相结合的医学病历实体识别算法。该算法采用CRF进行病历实体的初始识别,然后基于规则进行病历实体识别结果优化,其中规则包括基于决策树生成的规则和临床知识规则... 针对电子病历结构化中命名实体识别困难的问题,提出了一种基于CRF与规则相结合的医学病历实体识别算法。该算法采用CRF进行病历实体的初始识别,然后基于规则进行病历实体识别结果优化,其中规则包括基于决策树生成的规则和临床知识规则。实验证明,该算法对病历实体进行识别时准确率及召回率分别最高达到91.03%和87.26%,满足临床中系统应用需求,同时实验表明该算法具有很好的鲁棒性和稳定性。 展开更多
关键词 电子病历 病历实体 命名实体识别 条件随机场 决策树
在线阅读 下载PDF
基于树状条件随机场模型的语义角色标注 被引量:4
2
作者 李明 王亚斌 +1 位作者 张其文 王旭阳 《计算机工程》 CAS CSCD 北大核心 2010年第18期41-42,45,共3页
针对线性条件随机场模型不能清楚表达语义角色内部结构关系的问题,提出一种基于树状条件随机场模型的语义角色标注方法。对句法依存树上的层次依赖关系和兄弟依赖关系进行标注,处理状态变量之间的长距离依赖,利用CRFs模型能添加任意特... 针对线性条件随机场模型不能清楚表达语义角色内部结构关系的问题,提出一种基于树状条件随机场模型的语义角色标注方法。对句法依存树上的层次依赖关系和兄弟依赖关系进行标注,处理状态变量之间的长距离依赖,利用CRFs模型能添加任意特征的优点,在系统中添加新的组合特征和介词短语角色。在CoNNL 2008 Shared Task语料库上进行实验,结果证明该方法能有效提高系统的准确率和召回率。 展开更多
关键词 语义角色标注 特征选择 树状条件随机场
在线阅读 下载PDF
面向产品评论的细粒度情感分析 被引量:17
3
作者 刘丽 王永恒 韦航 《计算机应用》 CSCD 北大核心 2015年第12期3481-3486,3505,共7页
针对传统粗粒度情感分析忽略具体评价对象,以及现有细粒度情感分析方法忽略无关评价要素的问题,提出结合条件随机场(CRF)和语法树剪枝的方法对产品评论进行细粒度情感分析。采用基于MapReduce的并行化协同训练(Tri-training)的方法对语... 针对传统粗粒度情感分析忽略具体评价对象,以及现有细粒度情感分析方法忽略无关评价要素的问题,提出结合条件随机场(CRF)和语法树剪枝的方法对产品评论进行细粒度情感分析。采用基于MapReduce的并行化协同训练(Tri-training)的方法对语料进行半自主标注,利用融合多种语言特征的条件随机场模型,获取评论中的评价对象和正负面评价词。通过建立领域本体和句法路径库实现语法树剪枝,对含有多个评价对象和评价词的文本,去掉无关评价对象的干扰,抽取出正确的评价单元,最后形成可视化产品报告。实验结果显示,提出的方法在两种不同领域数据集上,识别情感要素的综合准确率达89%左右,情感评价单元的综合准确率也达89%左右。实验结果表明,与传统方法相比,结合CRF和语法树剪枝的方法识别准确率更高,性能更好。 展开更多
关键词 产品评论 细粒度情感分析 MAPREDUCE 协同训练 条件随机场 语法树剪枝
在线阅读 下载PDF
基于声学相关特征与词典语法相关特征的汉语重音检测 被引量:8
4
作者 倪崇嘉 张爱英 刘文举 《计算机学报》 EI CSCD 北大核心 2011年第9期1638-1649,共12页
重音对提高语音合成系统的自然度、可懂度以及语音识别系统的正确率等方面扮演着非常重要的作用.该文基于大规模韵律标注的语料库,利用声学相关特征及词典语法相关特征对汉语重音进行检测.采用Boosting集成分类回归树对当前音节的声学... 重音对提高语音合成系统的自然度、可懂度以及语音识别系统的正确率等方面扮演着非常重要的作用.该文基于大规模韵律标注的语料库,利用声学相关特征及词典语法相关特征对汉语重音进行检测.采用Boosting集成分类回归树对当前音节的声学相关特征以及词典语法相关特征进行建模,Boosting集成分类回归树充分利用了当前音节的特性.同时还对词典语法相关特征采用条件随机场方法建模,条件随机场很好地利用了当前音节的上下文特性.最后,将Boosting集成分类回归树模型和条件随机场模型加权组合获得识别率更高的混合模型.该混合模型克服了Boosting集成分类回归树模型的不足,实现了Boosting集成分类回归树和条件随机场的优势互补.实验结果表明该方法具有较好的分类效果,在ASCCD语料库上能够获得84.82%重音检测正确率.同时,与之前其他人的工作在相同的条件下(相同的训练集和测试集)对比,在正确率方面,该方法分别有4.01%和1.67%的提高.另外,该文中,对英语的重音检测和汉语的重音检测做了对比,并通过特征分析方法从另一个层面验证了一些语言学上的结论. 展开更多
关键词 重音 Boosting集成分类回归树 条件随机场 神经网络 分类回归树
在线阅读 下载PDF
基于完全联系的条件随机场的图像标注 被引量:5
5
作者 刘彤 黄修添 +1 位作者 马建设 苏萍 《计算机应用》 CSCD 北大核心 2017年第10期2841-2846,共6页
传统的图像标注模型通常存在两个问题:只能够对短距离的像素上下文信息进行建模和复杂的模型推理过程。为了提高图像标注的精度、简化图像标注的模型推理过程,采用完全联系的条件随机场模型进行图像标注,提出利用基于高斯kd树的平均场... 传统的图像标注模型通常存在两个问题:只能够对短距离的像素上下文信息进行建模和复杂的模型推理过程。为了提高图像标注的精度、简化图像标注的模型推理过程,采用完全联系的条件随机场模型进行图像标注,提出利用基于高斯kd树的平均场估计方法实现该模型的高效推理。为了更好地验证算法的有效性,实验的图片数据库不仅包含标准的图片库——剑桥大学微软研究图片库(MSRC-9),还包含作者制作的机械零件图片库(My Dataset_1)和办公桌图片库(My Dataset_2)。新算法在三个图片库上的平均标注精度分别可以达到77.96%、97.15%和95.35%,每幅图的平均运行时间为2 s。实验结果表明,基于完全联系的条件随机场的图像标注能够更充分地考虑不同的像素上下文信息来提高标注精度,而基于高斯kd树的模型推理能够提高模型推理的效率。 展开更多
关键词 条件随机场 图像标注 上下文信息 高斯kd树 模型推理
在线阅读 下载PDF
基于互补模型的汉语重音检测 被引量:3
6
作者 倪崇嘉 刘文举 徐波 《计算机工程》 CAS CSCD 北大核心 2011年第23期20-23,共4页
针对现有汉语重音检测方法正确率较低的问题,利用声学、词典和语法相关特征的不同分类器组合,基于Boosting分类回归树+条件随机场的互补模型,提出一种改进的汉语重音检测方法。在ASCCD语料库上的实验结果表明,该方法能获得84.9%的重音... 针对现有汉语重音检测方法正确率较低的问题,利用声学、词典和语法相关特征的不同分类器组合,基于Boosting分类回归树+条件随机场的互补模型,提出一种改进的汉语重音检测方法。在ASCCD语料库上的实验结果表明,该方法能获得84.9%的重音检测正确率,相比基于神经网络+决策树的基线系统提高2.7%。 展开更多
关键词 重音 互补模型 Boosting分类回归树 条件随机场 神经网络 支持向量机
在线阅读 下载PDF
基于句法结构约束的模糊限制信息范围检测 被引量:1
7
作者 周惠巍 杨欢 +2 位作者 黄德根 李瑶 李丽双 《中文信息学报》 CSCD 北大核心 2013年第5期137-143,共7页
模糊限制信息检测用于区分模糊限制信息与事实信息,提高抽取信息的真实性和可靠性。模糊限制信息范围的界定具有依赖于语义和句法结构的特点,是模糊限制信息检测的一个难点。该文提出一种基于句法结构约束的模糊限制信息范围检测方法,... 模糊限制信息检测用于区分模糊限制信息与事实信息,提高抽取信息的真实性和可靠性。模糊限制信息范围的界定具有依赖于语义和句法结构的特点,是模糊限制信息检测的一个难点。该文提出一种基于句法结构约束的模糊限制信息范围检测方法,基于依存结构树和短语结构树构建决策树,获取句法结构约束集,用于产生句法结构约束特征,并加入到条件随机域模型中进行模糊限制信息范围检测。实验采用CoNLL-2010共享任务数据集,在标准的模糊限制语标注语料上,获得了70.28%的F值,比采用普通的句法结构特征提高了4.22%。 展开更多
关键词 模糊限制信息范围检测 句法结构约束 决策树 条件随机域
在线阅读 下载PDF
基于条件随机域的上下文人类动作识别 被引量:1
8
作者 朱文球 刘强 《计算机工程与应用》 CSCD 北大核心 2008年第28期180-183,共4页
提出一种新的基于条件随机域和隐马尔可夫模型(HMM)的人类动作识别方法——HMCRF。目前已有的动作识别方法均使用隐马尔可夫模型及其变型,这些模型一个最突出的不足就是要求观察值相互独立。条件模型很容易表示上下文相关性,且可使用动... 提出一种新的基于条件随机域和隐马尔可夫模型(HMM)的人类动作识别方法——HMCRF。目前已有的动作识别方法均使用隐马尔可夫模型及其变型,这些模型一个最突出的不足就是要求观察值相互独立。条件模型很容易表示上下文相关性,且可使用动态规划做到有效且精确的推论,它的参数可以通过凸函数优化训练得到。把条件图形模型应用于动作识别之上,并通过大量的实验表明,所提出的方法在识别正确率方面明显优于一般线性结构的CRF和HMM。 展开更多
关键词 条件随机域 隐马尔可夫模型 联合树算法 动作识别
在线阅读 下载PDF
基于图像处理的温室黄瓜霜霉病诊断系统 被引量:38
9
作者 马浚诚 温皓杰 +3 位作者 李鑫星 傅泽田 吕雄杰 张领先 《农业机械学报》 EI CAS CSCD 北大核心 2017年第2期195-202,共8页
为进一步提高温室黄瓜霜霉病诊断的准确率,构建了一个基于图像处理的温室黄瓜霜霉病诊断系统。针对温室黄瓜栽培现场采集的病害图像,采用基于条件随机场(Conditional random fields,CRF)的图像分割方法进行病斑图像分割,并采用决策树模... 为进一步提高温室黄瓜霜霉病诊断的准确率,构建了一个基于图像处理的温室黄瓜霜霉病诊断系统。针对温室黄瓜栽培现场采集的病害图像,采用基于条件随机场(Conditional random fields,CRF)的图像分割方法进行病斑图像分割,并采用决策树模型扩展一元势函数,提高病斑图像分割的准确性;将分割后的病斑图像转换到HSV颜色空间并提取其颜色、纹理和形状等25个特征,利用粗糙集方法进行特征选择与优化;构建了基于径向基核函数的SVM分类器,准确地识别与诊断温室黄瓜霜霉病。系统试验验证结果表明,该系统采用的病斑分割方法,能够克服复杂背景和光照条件的影响,准确地提取病斑图像;采用粗糙集方法能够有效地选择分类特征,将25个初始特征减少到12个,提高了运行效率;黄瓜霜霉病识别准确率达到90%,能够满足设施蔬菜叶部病害诊断的需求。 展开更多
关键词 温室黄瓜 霜霉病 诊断系统 图像处理 条件随机场 决策树
在线阅读 下载PDF
基于症状构成成分的上下位关系自动抽取方法 被引量:1
10
作者 王婷 王祺 +2 位作者 黄越圻 殷亦超 高炬 《计算机应用》 CSCD 北大核心 2017年第10期2999-3005,共7页
针对症状间上下位关系具有较强结构特性的问题,提出一种基于症状构成成分的上下位关系自动抽取方法。首先,通过观察症状实体,发现症状可以切分为原子症状词、修饰词等八种成分,且成分的构成序列满足一定的规则。然后,利用词法分析系统... 针对症状间上下位关系具有较强结构特性的问题,提出一种基于症状构成成分的上下位关系自动抽取方法。首先,通过观察症状实体,发现症状可以切分为原子症状词、修饰词等八种成分,且成分的构成序列满足一定的规则。然后,利用词法分析系统和条件随机场模型对症状进行切分和成分标注。最后,把症状之间的关系抽取看作一个分类问题,选取症状成分的构成特征、词典特征以及通用特征作为分类算法的特征;基于多种分类算法训练模型,将症状间的关系分为上下位关系和非上下位关系。实验结果表明,当选用支持向量机算法,同时选用三类特征时,取得了最好的效果,准确率、召回率和F1值分别达到了82.68%、82.13%和82.40%。在此基础上,使用所提出的关系抽取算法,抽取了20 619条上下位关系,构建了具有上下位关系的症状知识库。 展开更多
关键词 上下位关系 症状构成成分 条件随机场 关系分类 支持向量机 决策树 朴素贝叶斯
在线阅读 下载PDF
结合gazetteers和句法依存树的中文命名实体识别 被引量:2
11
作者 方红 苏铭 +1 位作者 冯一铂 张澜 《计算机工程与应用》 CSCD 北大核心 2022年第18期227-232,共6页
中文命名实体识别在机器翻译、智能问答等下游任务中起着重要作用。提出一种新的基于gazetteers和句法依存树的中文命名实体识别方法,旨在解决由于字符向量缺少词信息和词之间的句法依赖结构信息而导致的错误传递问题。该方法将句子中的... 中文命名实体识别在机器翻译、智能问答等下游任务中起着重要作用。提出一种新的基于gazetteers和句法依存树的中文命名实体识别方法,旨在解决由于字符向量缺少词信息和词之间的句法依赖结构信息而导致的错误传递问题。该方法将句子中的gazetteers信息和句法依存树信息形成图,再通过自适应门控图神经网络(adapted gated graph neural networks,AGGNN)将其融入到字符向量中,从而使得每个字向量很好地获取词汇间的语义关系,提升识别准确率。通过在Ecommerce、Resume、QI等数据集的验证,新的方法可以使得中文实体识别的准确率得到较大提升。 展开更多
关键词 GAZETTEERS 句法依存树 序列标注 自适应门控图神经网络(AGGNN) 双向长短记忆网络(BiLSTM) 条件随机场(CRF)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部