The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more d...The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity.展开更多
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ...Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.展开更多
The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine...The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine basin,reveal the development laws of fine-grained deposits and source-reservoir,and identify the sweet sections of shale oil.The results show that fine-grained gravity flow is one of the important sedimentary processes in deep lake environment,and it can transport fine-grained clasts and organic matter in shallow water to deep lake,forming sweet sections and high-quality source rocks of shale oil.Fine-grained gravity flow deposits in deep waters of lacustrine basins in China are mainly fine-grained high-density flow,fine-grained turbidity flow(including surge-like turbidity flow and fine-grained hyperpycnal flow),fine-grained viscous flow(including fine-grained debris flow and mud flow),and fine-grained transitional flow deposits.The distribution of fine-grained gravity flow deposits in the warm and humid unbalanced lacustrine basins are controlled by lake-level fluctuation,flooding events,and lakebed paleogeomorphology.During the lake-level rise,fine-grained hyperpycnal flow caused by flooding formed fine-grained channel–levee–lobe system in the flat area of the deep lake.During the lake-level fall,the sublacustrine fan system represented by unconfined channel was developed in the flexural slope breaks and sedimentary slopes of depressed lacustrine basins,and in the steep slopes of faulted lacustrine basins;the sublacustrine fan system with confined or unconfined channel was developed on the gentle slopes and in axial direction of faulted lacustrine basins,with fine-grained gravity flow deposits possibly existing in the lower fan.Within the fourth-order sequences,transgression might lead to organic-rich shale and fine-grained hyperpycnal flow deposits,while regression might cause fine-grained high-density flow,surge-like turbidity flow,fine-grained debris flow,mud flow,and fine-grained transitional flow deposits.Since the Permian,in the shale strata of lacustrine basins in China,multiple transgression-regression cycles of fourth-order sequences have formed multiple source-reservoir assemblages.Diverse fine-grained gravity flow sedimentation processes have created sweet sections of thin siltstone consisting of fine-grained high-density flow,fine-grained hyperpycnal flow and surge-like turbidity flow deposits,sweet sections with interbeds of mudstone and siltstone formed by fine-grained transitional flows,and sweet sections of shale containing silty and muddy clasts and with horizontal bedding formed by fine-grained debris flow and mud flow.The model of fine-grained gravity flow sedimentation in lacustrine basin is significant for the scientific evaluation of sweet shale oil reservoir and organic-rich source rock.展开更多
We investigated the influence of an inserted bar on the hopper flow experimentally.Three geometrical parameters,size of upper outlet D1,size of lower outlet D0,and the height of bar H,are variables here.With varying H...We investigated the influence of an inserted bar on the hopper flow experimentally.Three geometrical parameters,size of upper outlet D1,size of lower outlet D0,and the height of bar H,are variables here.With varying H we found three regimes:one transition from clogging to a surface flow and another transition from a surface flow to a dense flow.For the dense flow,the flow rate follows Beverloo’s law and there is a saturation of inclination of free surfaceθ.We plotted the velocity field and there is a uniform linear relation between the particle velocity and depth from the free surface.We also found that the required value of D_(1) to guarantee the connectivity of flow is little smaller than D_(0).For the transition from a surface flow to a dense flow,there is a jump of flow rate and the minimumθfor flowing is two degrees larger than the repose angle.展开更多
Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.T...Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams.展开更多
The flow and heat transfer of molten GaAs during Czochralski growth are studied with a time-dependent and three- dimensional turbulent flow model. A transition from axisymmetric flow to nonoaxisymmetric flow and then ...The flow and heat transfer of molten GaAs during Czochralski growth are studied with a time-dependent and three- dimensional turbulent flow model. A transition from axisymmetric flow to nonoaxisymmetric flow and then back to axisymmetric flow again with increasing the crucible rotation rate is predicted. In the non-axisymmetric regime, the thermal wave induced by the combination of coriolis force, buoyancy and viscous force in the GaAs melt is predicted for the first time. The thermal wave is confirmed to be baroclinic thermal wave. The origin of the transition to non-axisymmetric flow is baroclinic instability. The critical parameters for the, transitions are presented, which are quantitatively in agreement with Fein and Preffer's experimental results, The calculated results can be taken as a reference for the growth of GaAs single-crystal of high quality,展开更多
The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This ...The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This paper established a geometric model based on the high-pressure hydrate slurry experimental loop.The model was used to carry out simulation research on the flow characteristics of gas-liquid-solid three-phase flow.The specific research is as follows:Firstly,the effects of factors such as slurry flow velocity,hydrate particle density,hydrate particle size,and hydrate volume fraction on the stratified smooth flow were specifically studied.Orthogonal test obtained particle size has the most influence on the particle concentration distribution.The slurry flow velocity is gradually increased based on stratified smooth flow.Various flow patterns were observed and their characteristics were analyzed.Secondly,increasing the slurry velocity to 2 m/s could achieve the slurry flow pattern of partial hydrate in the pipeline transition from stratified smooth flow to wavy flow.When the flow rate increases to 3 m/s,a violent wave forms throughout the entire loop.Based on wave flow,as the velocity increased to 4 m/s,and the flow pattern changed to slug flow.When the particle concentration was below 10%,the increase of the concentration would aggravate the slug flow trend;if the particle concentration was above 10%,the increase of the concentration would weaken the slug flow trend,the increase of particle density and liquid viscosity would weaken the tendency of slug flow.The relationship between the pressure drop gradients of several different flow patterns is:slug flow>wave flow>stratified smooth flow.展开更多
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-d...As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.展开更多
Railway terminal is an important part of railway network. Transport organization of railway terminal is the key of the railway transport organization. Moreover, the organization of transport work is based on the organ...Railway terminal is an important part of railway network. Transport organization of railway terminal is the key of the railway transport organization. Moreover, the organization of transport work is based on the organization of wagon flows in the railway terminal. Because of the great amounts of equipment and a large number of train operations, the study on railway terminal transport organization is mostly focused on a marshalling station in railway terminal or a part of it. Systematic study taking railway terminal as a whole is very few. In this paper, the organization of wagon flows in a railway terminal is analyzed and a wagon flow model in a railway terminal is established. The main principles of organization of local trains are also presented.展开更多
文摘The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity.
基金supported by the National Natural Science Foundation of China(52304067,62273213)the Natural Science Foundation of Shandong Province of China(ZR2021QE073)+1 种基金the Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)the China Postdoctoral Science Foundation(2023M732111)。
文摘Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.
基金Supported by the Petrochina Science and Technology Project(2021DJ18).
文摘The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine basin,reveal the development laws of fine-grained deposits and source-reservoir,and identify the sweet sections of shale oil.The results show that fine-grained gravity flow is one of the important sedimentary processes in deep lake environment,and it can transport fine-grained clasts and organic matter in shallow water to deep lake,forming sweet sections and high-quality source rocks of shale oil.Fine-grained gravity flow deposits in deep waters of lacustrine basins in China are mainly fine-grained high-density flow,fine-grained turbidity flow(including surge-like turbidity flow and fine-grained hyperpycnal flow),fine-grained viscous flow(including fine-grained debris flow and mud flow),and fine-grained transitional flow deposits.The distribution of fine-grained gravity flow deposits in the warm and humid unbalanced lacustrine basins are controlled by lake-level fluctuation,flooding events,and lakebed paleogeomorphology.During the lake-level rise,fine-grained hyperpycnal flow caused by flooding formed fine-grained channel–levee–lobe system in the flat area of the deep lake.During the lake-level fall,the sublacustrine fan system represented by unconfined channel was developed in the flexural slope breaks and sedimentary slopes of depressed lacustrine basins,and in the steep slopes of faulted lacustrine basins;the sublacustrine fan system with confined or unconfined channel was developed on the gentle slopes and in axial direction of faulted lacustrine basins,with fine-grained gravity flow deposits possibly existing in the lower fan.Within the fourth-order sequences,transgression might lead to organic-rich shale and fine-grained hyperpycnal flow deposits,while regression might cause fine-grained high-density flow,surge-like turbidity flow,fine-grained debris flow,mud flow,and fine-grained transitional flow deposits.Since the Permian,in the shale strata of lacustrine basins in China,multiple transgression-regression cycles of fourth-order sequences have formed multiple source-reservoir assemblages.Diverse fine-grained gravity flow sedimentation processes have created sweet sections of thin siltstone consisting of fine-grained high-density flow,fine-grained hyperpycnal flow and surge-like turbidity flow deposits,sweet sections with interbeds of mudstone and siltstone formed by fine-grained transitional flows,and sweet sections of shale containing silty and muddy clasts and with horizontal bedding formed by fine-grained debris flow and mud flow.The model of fine-grained gravity flow sedimentation in lacustrine basin is significant for the scientific evaluation of sweet shale oil reservoir and organic-rich source rock.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11705256 and 11905272)National Postdoctoral Program for Innovative Talents,China(Grant No.BX201700258)West Light Foundation of the Chinese Academy of Sciences(Grant No.2018-98)。
文摘We investigated the influence of an inserted bar on the hopper flow experimentally.Three geometrical parameters,size of upper outlet D1,size of lower outlet D0,and the height of bar H,are variables here.With varying H we found three regimes:one transition from clogging to a surface flow and another transition from a surface flow to a dense flow.For the dense flow,the flow rate follows Beverloo’s law and there is a saturation of inclination of free surfaceθ.We plotted the velocity field and there is a uniform linear relation between the particle velocity and depth from the free surface.We also found that the required value of D_(1) to guarantee the connectivity of flow is little smaller than D_(0).For the transition from a surface flow to a dense flow,there is a jump of flow rate and the minimumθfor flowing is two degrees larger than the repose angle.
基金financially supported by National Natural Science Foundation of China(No.U20B6003).
文摘Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams.
基金Supported by the Natural Science Foundation of China (No 50376078).
文摘The flow and heat transfer of molten GaAs during Czochralski growth are studied with a time-dependent and three- dimensional turbulent flow model. A transition from axisymmetric flow to nonoaxisymmetric flow and then back to axisymmetric flow again with increasing the crucible rotation rate is predicted. In the non-axisymmetric regime, the thermal wave induced by the combination of coriolis force, buoyancy and viscous force in the GaAs melt is predicted for the first time. The thermal wave is confirmed to be baroclinic thermal wave. The origin of the transition to non-axisymmetric flow is baroclinic instability. The critical parameters for the, transitions are presented, which are quantitatively in agreement with Fein and Preffer's experimental results, The calculated results can be taken as a reference for the growth of GaAs single-crystal of high quality,
基金supported by the National Natural Science Foundation of China(Grant No.52274061&52004039&51974037)China Postdoctoral Science Foundation(Grant No.2023T160717&2021M693908)+1 种基金The major project of universities affiliated to Jiangsu Province basic science(natural science)research(Grant No.21KJA440001)Jiangsu Qinglan Project,Changzhou Longcheng Talent Plan-Youth Science and Technology Talent Recruitment Project.
文摘The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This paper established a geometric model based on the high-pressure hydrate slurry experimental loop.The model was used to carry out simulation research on the flow characteristics of gas-liquid-solid three-phase flow.The specific research is as follows:Firstly,the effects of factors such as slurry flow velocity,hydrate particle density,hydrate particle size,and hydrate volume fraction on the stratified smooth flow were specifically studied.Orthogonal test obtained particle size has the most influence on the particle concentration distribution.The slurry flow velocity is gradually increased based on stratified smooth flow.Various flow patterns were observed and their characteristics were analyzed.Secondly,increasing the slurry velocity to 2 m/s could achieve the slurry flow pattern of partial hydrate in the pipeline transition from stratified smooth flow to wavy flow.When the flow rate increases to 3 m/s,a violent wave forms throughout the entire loop.Based on wave flow,as the velocity increased to 4 m/s,and the flow pattern changed to slug flow.When the particle concentration was below 10%,the increase of the concentration would aggravate the slug flow trend;if the particle concentration was above 10%,the increase of the concentration would weaken the slug flow trend,the increase of particle density and liquid viscosity would weaken the tendency of slug flow.The relationship between the pressure drop gradients of several different flow patterns is:slug flow>wave flow>stratified smooth flow.
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos. 51309040, 51379025), and the Fundamental Research Funds for the Central Universities (Nos. 3132014224, 3132014318).
文摘As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.
文摘Railway terminal is an important part of railway network. Transport organization of railway terminal is the key of the railway transport organization. Moreover, the organization of transport work is based on the organization of wagon flows in the railway terminal. Because of the great amounts of equipment and a large number of train operations, the study on railway terminal transport organization is mostly focused on a marshalling station in railway terminal or a part of it. Systematic study taking railway terminal as a whole is very few. In this paper, the organization of wagon flows in a railway terminal is analyzed and a wagon flow model in a railway terminal is established. The main principles of organization of local trains are also presented.