A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fau...A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fault type and utilizes the whole system capacity to inject the reactive current required by grid codes and deliver maximum possible active power to support grid frequency and avoid generation loss.All this has been reached by taking the grid-side converter’s phase current limit into account.The strategy is compatible with different countries’grid codes and prevents pulsating active power injection,in an unbalanced grid condition.Model predictive current controller is applied to handling rapid transients.During faults,the energy storage system maintains DC-link voltage,which causes voltage fluctuations to be eliminated,significantly.A fault ride-through strategy was proposed for PMSG-based wind turbines,neglecting fault characteristics,second,reaching maximum possible grid support in faulty grid conditions,while avoiding over-current and third,considerable reduction in energy storage system size and power rating.Inspiring simulations have been carried out through MATLAB/SIMULINK to validate the feasibility and competency of the proposed fault ride-through method and efficiency of the entire control system.展开更多
单相开路故障的五相永磁同步电机(permanent-magnet synchronous motor,PMSM)采用有限集模型预测转矩和磁链控制(finite-control-set model predictive torque and flux control,FCS-MPTFC)策略,存在转矩脉动大、价值函数的权重系数整...单相开路故障的五相永磁同步电机(permanent-magnet synchronous motor,PMSM)采用有限集模型预测转矩和磁链控制(finite-control-set model predictive torque and flux control,FCS-MPTFC)策略,存在转矩脉动大、价值函数的权重系数整定困难、迭代计算量大以及共模电压(commonmode voltage,CMV)高等问题。为此,该文提出一种简化FCS-MPTFC策略。首先,建立五相PMSM在单相开路故障情况下的数学模型,并分析CMV产生的机理。其次,以抑制3次谐波电流的原则合成等幅值虚拟电压矢量(virtual voltage vector,V^(3)),并将转矩和磁链价值函数等效转化为电压价值函数,同时采用无差拍控制思想计算出参考电压矢量,进而通过合理划分扇区,直接获得最优V^(3)。最后,选择方向相反的两个基电压矢量代替零矢量,以减小开路故障下的CMV。仿真和实验结果表明:所提控制策略不仅能抑制单相开路故障导致的转矩脉动、降低计算负荷和CMV、抑制电流谐波,而且具有优良的稳态和动态性能。展开更多
文摘A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fault type and utilizes the whole system capacity to inject the reactive current required by grid codes and deliver maximum possible active power to support grid frequency and avoid generation loss.All this has been reached by taking the grid-side converter’s phase current limit into account.The strategy is compatible with different countries’grid codes and prevents pulsating active power injection,in an unbalanced grid condition.Model predictive current controller is applied to handling rapid transients.During faults,the energy storage system maintains DC-link voltage,which causes voltage fluctuations to be eliminated,significantly.A fault ride-through strategy was proposed for PMSG-based wind turbines,neglecting fault characteristics,second,reaching maximum possible grid support in faulty grid conditions,while avoiding over-current and third,considerable reduction in energy storage system size and power rating.Inspiring simulations have been carried out through MATLAB/SIMULINK to validate the feasibility and competency of the proposed fault ride-through method and efficiency of the entire control system.
文摘单相开路故障的五相永磁同步电机(permanent-magnet synchronous motor,PMSM)采用有限集模型预测转矩和磁链控制(finite-control-set model predictive torque and flux control,FCS-MPTFC)策略,存在转矩脉动大、价值函数的权重系数整定困难、迭代计算量大以及共模电压(commonmode voltage,CMV)高等问题。为此,该文提出一种简化FCS-MPTFC策略。首先,建立五相PMSM在单相开路故障情况下的数学模型,并分析CMV产生的机理。其次,以抑制3次谐波电流的原则合成等幅值虚拟电压矢量(virtual voltage vector,V^(3)),并将转矩和磁链价值函数等效转化为电压价值函数,同时采用无差拍控制思想计算出参考电压矢量,进而通过合理划分扇区,直接获得最优V^(3)。最后,选择方向相反的两个基电压矢量代替零矢量,以减小开路故障下的CMV。仿真和实验结果表明:所提控制策略不仅能抑制单相开路故障导致的转矩脉动、降低计算负荷和CMV、抑制电流谐波,而且具有优良的稳态和动态性能。