In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a tran...In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a transient antenna was proposed.During the research,crucial characteristics of the transient antenna formed by a shaped charge with a 30 mm diameter,such as resonant frequency,radiation pattern,and radiation efficiency,were evaluated.The typical shaped charge jet morphology was obtained based on the simulations,in which it could insight the dynamic behavior of the shaped charge jet selected.An equivalent model experiment was employed to test the radiation efficiency,and it showed that a shorting pin loading method could increase the relative bandwidth of the jet antenna to 32.8%,and the experimental results correlate with the theoretical predictions for half-wave dipole antennas reasonably well.Additionally,variations in the diameter of the shaped charge jet were found to affect the input impedance and impedance bandwidth,while the length of the jet influenced the resonant frequency of the antenna.This suggests that altering these parameters can achieve reconfigurability of the jet antenna.展开更多
Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration o...Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration of minerals.In this paper,we calculated the full-wave airborne transient electromagnetic data,according to the result of numerical research,the advantage of switch-off time response in electromagnetic detection was proofed via experiments.Firstly,based on the full-wave airborne transient electromagnetic system developed by Jilin University(JLU-ATEMI),we proposed a method to compute the full-waveform electromagnetic(EM)data of 3D model using the FDTD approach and convolution algorithm,and verify the calculation by the response of homogenous half-space.Then,through comparison of switch-off-time response and off-time response,we studied the effect of ramp time on anomaly detection.Finally,we arranged two experimental electromagnetic detection,the results indicated that the switch-off-time response can reveal the shallow target more effectively,and the full-waveform airborne electromagnetic system is an effective technique for shallow target detection.展开更多
In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position inf...In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.展开更多
For conveniently calculating the radiated electric field of transverse electromagnetic(TEM) horn antenna,an approximate simplified analytical calculation method is suggested.This method divides the horn to a system of...For conveniently calculating the radiated electric field of transverse electromagnetic(TEM) horn antenna,an approximate simplified analytical calculation method is suggested.This method divides the horn to a system of V-antennas and superimposes the fields of all V-antennas to obtain the field of the TEM horn.The method is compared with the traditional analytical method and numerical method.The obtained results suggest that the proposed method is valid,simple and that it can fastly calculate the radiated electric field of the TEM horn antenna in an arbitrary space with an arbitrary excitation voltage.Based on this method,radiation of the TEM horn antenna of a high-altitude electromagnetic pulse(HEMP) simulator is simulated.Rise time,pulse width,peak value of electric field,and field distribution are analyzed.Results show that the TEM horn antenna can be used in HEMP simulators: the near field waveform is closer to the standard waveform than to the far field waveform; the standards for the rise time and the peak value of electric field are easily satisfied; the pulse width of the radiated field can be increased by broadening the pulse width of an excitation source and by making the antenna of a proper展开更多
Numerical calculation for two integral transforms in 2.5-D transient electromagnetic forward is a difficult and key task, namely, the inverse Fourier transform and the inverse Laplace transform. Some effective algorit...Numerical calculation for two integral transforms in 2.5-D transient electromagnetic forward is a difficult and key task, namely, the inverse Fourier transform and the inverse Laplace transform. Some effective algorithms for them were described. Based on the known algorithms in DC resistivity on wave-number distribution and selection, we proposed a principle on how to choose the least wave-number concerning the central-loop transient electromagnetic method. First, observe the behavior of transformation function curve with regard to wave-number in Fourier domain. In the light of its asymptote, ascertain the coverage scope of wave-number. Compared with analytic solution, the least wave-number in Fourier domain can be derived. Furthermore, the Laplace numerical inversion algorithm which needs only a few Laplace variables in pure real domain was also introduced here. The procedure was applied to forward modeling on transient electromagnetic field of a vertical magnetic dipole over uniform half-space to demonstrate them effectiveness and general applicability.展开更多
基金supported by the"Fundamental Research Funds for the Central Universities"(Grant No.30924010801).
文摘In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a transient antenna was proposed.During the research,crucial characteristics of the transient antenna formed by a shaped charge with a 30 mm diameter,such as resonant frequency,radiation pattern,and radiation efficiency,were evaluated.The typical shaped charge jet morphology was obtained based on the simulations,in which it could insight the dynamic behavior of the shaped charge jet selected.An equivalent model experiment was employed to test the radiation efficiency,and it showed that a shorting pin loading method could increase the relative bandwidth of the jet antenna to 32.8%,and the experimental results correlate with the theoretical predictions for half-wave dipole antennas reasonably well.Additionally,variations in the diameter of the shaped charge jet were found to affect the input impedance and impedance bandwidth,while the length of the jet influenced the resonant frequency of the antenna.This suggests that altering these parameters can achieve reconfigurability of the jet antenna.
基金Project(41674109) supported by the National Natural Science Foundation of China
文摘Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration of minerals.In this paper,we calculated the full-wave airborne transient electromagnetic data,according to the result of numerical research,the advantage of switch-off time response in electromagnetic detection was proofed via experiments.Firstly,based on the full-wave airborne transient electromagnetic system developed by Jilin University(JLU-ATEMI),we proposed a method to compute the full-waveform electromagnetic(EM)data of 3D model using the FDTD approach and convolution algorithm,and verify the calculation by the response of homogenous half-space.Then,through comparison of switch-off-time response and off-time response,we studied the effect of ramp time on anomaly detection.Finally,we arranged two experimental electromagnetic detection,the results indicated that the switch-off-time response can reveal the shallow target more effectively,and the full-waveform airborne electromagnetic system is an effective technique for shallow target detection.
基金Projects(40804027,41074085) supported by the National Natural Science Foundation of ChinaProject(09JJ3048) supported by the Natural Science Foundation of Hunan Province,ChinaProject(200805331082) supported by the Research Fund for the Doctoral Program of Higher Education,China
文摘In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.
基金Project supported by National Natural Science Foundation of China(51177174).
文摘For conveniently calculating the radiated electric field of transverse electromagnetic(TEM) horn antenna,an approximate simplified analytical calculation method is suggested.This method divides the horn to a system of V-antennas and superimposes the fields of all V-antennas to obtain the field of the TEM horn.The method is compared with the traditional analytical method and numerical method.The obtained results suggest that the proposed method is valid,simple and that it can fastly calculate the radiated electric field of the TEM horn antenna in an arbitrary space with an arbitrary excitation voltage.Based on this method,radiation of the TEM horn antenna of a high-altitude electromagnetic pulse(HEMP) simulator is simulated.Rise time,pulse width,peak value of electric field,and field distribution are analyzed.Results show that the TEM horn antenna can be used in HEMP simulators: the near field waveform is closer to the standard waveform than to the far field waveform; the standards for the rise time and the peak value of electric field are easily satisfied; the pulse width of the radiated field can be increased by broadening the pulse width of an excitation source and by making the antenna of a proper
基金Project(40344022) supported by the National Natural Science Foundation of China
文摘Numerical calculation for two integral transforms in 2.5-D transient electromagnetic forward is a difficult and key task, namely, the inverse Fourier transform and the inverse Laplace transform. Some effective algorithms for them were described. Based on the known algorithms in DC resistivity on wave-number distribution and selection, we proposed a principle on how to choose the least wave-number concerning the central-loop transient electromagnetic method. First, observe the behavior of transformation function curve with regard to wave-number in Fourier domain. In the light of its asymptote, ascertain the coverage scope of wave-number. Compared with analytic solution, the least wave-number in Fourier domain can be derived. Furthermore, the Laplace numerical inversion algorithm which needs only a few Laplace variables in pure real domain was also introduced here. The procedure was applied to forward modeling on transient electromagnetic field of a vertical magnetic dipole over uniform half-space to demonstrate them effectiveness and general applicability.