Objective:Polycystic ovary syndrome(PCOS)is a common endocrine disorder that affects women’s health.This study aims to investigate gene and transcription factor(TF)expression differences between PCOS patients and hea...Objective:Polycystic ovary syndrome(PCOS)is a common endocrine disorder that affects women’s health.This study aims to investigate gene and transcription factor(TF)expression differences between PCOS patients and healthy individuals using bioinformatics approaches,and to verify the function of key transcription factors,with the goal of providing new insights into the pathogenesis of PCOS.Methods:Differentially expressed genes(DEGs)and differentially expressed transcription factors(DETFs)between PCOS patients and controls were identified from the RNA sequencing dataset GSE168404 using bioinformatics methods.Functional enrichment analysis was performed using Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)databases.The expression and function of core transcription factors were further validated in ovarian tissues of PCOS model mice and control mice using Western blotting and reverse transcription quantitative polymerase chain reaction(RTqPCR).Results:A total of 332 DEGs were identified between PCOS patients and controls,including 259 upregulated and 73 downregulated genes in the PCOS group.19 DETFs were further screened,of which 16 were upregulated and 3 were downregulated in PCOS.The upregulated DETFs(including TFCP2L1,DACH1,ESR2,AFF3,SMAD9,ZNF331,HOPX,ATOH8,HIF3α,DPF3,HOXC4,HES1,ID1,JDP2,SOX4,and ID3)were primarily associated with lipid metabolism,development,and cell adhesion.Protein and mRNA expression analysis in PCOS model mice revealed significantly decreased levels of hypoxia-inducible factor(HIF)1αand HIF2α,and significantly increased expression of HIF3αcompared to control mice(all P<0.001).Conclusion:Significant differences in gene and TF expression exist between PCOS patients and healthy individuals.HIF-3αmay play a crucial role in PCOS and could serve as a novel biomarker for diagnosis and a potential therapeutic target.展开更多
Climate deterioration,water shortages,and abiotic stress are the main threats worldwide that seriously affect cotton growth,yield,and fiber quality.Therefore,research on improving cotton yield and tolerance to biotic ...Climate deterioration,water shortages,and abiotic stress are the main threats worldwide that seriously affect cotton growth,yield,and fiber quality.Therefore,research on improving cotton yield and tolerance to biotic and abiotic stresses is of great importance.The NAC proteins are crucial and plant-specific transcription factors(TFs)that are involved in cotton growth,development,and stress responses.The comprehensive utilization of cotton NAC TFs in the improvement of cotton varieties through novel biotechnological methods is feasible.Based on cotton genomic data,genome-wide identification and analyses have revealed potential functions of cotton NAC genes.Here,we comprehensively summarize the recent progress in understanding cotton NAC TFs roles in regulating responses to drought,salt,and Verticillium wilt-related stresses,as well as leaf senescence and the development of fibers,xylem,and glands.The detailed regulatory network of NAC proteins in cotton is also elucidated.Cotton NAC TFs directly bind to the promoters of genes associated with ABA biosynthesis and secondary cell-wall formation,participate in several biological processes by interacting with related proteins,and regulate the expression of downstream genes.Studies have shown that the overexpression of NAC TF genes in cotton and other model plants improve their drought or salt tolerance.This review elucidates the latest findings on the functions and regulation of cotton NAC proteins,broadens our understanding of cotton NAC TFs,and lays a fundamental foundation for further molecular breeding research in cotton.展开更多
Drought is one of the most important environmental constraints limiting plant growth, development and crop yield. Many drought-inducible genes have been identified by molecular and genomic analyses in Arabidopsis, ric...Drought is one of the most important environmental constraints limiting plant growth, development and crop yield. Many drought-inducible genes have been identified by molecular and genomic analyses in Arabidopsis, rice and other crops. To better understand reaction mechanism of plant to drought tolerance, we mainly focused on introducing the research of transcription factors (TFs) in signal transduction and regulatory network of gene expression conferring drought. A TF could bind multiple target genes to increase one or more kinds of stress tolerance. Sometimes, several TFs might act together with a target gene. So drought-tolerance genes or TFs might respond to high-salinity, cold or other stresses. The crosstalk of multiple stresses signal pathways is a crucial aspect of understanding stress signaling.展开更多
The human promyelocytic cell line HL-60 overexpresses the c-myc protooncogene. Plasmid pDACx carrying antisense human c-myc DNA and neo gene was introduced into HL-60 cells with lipofectin reagent. Upon DNA entering t...The human promyelocytic cell line HL-60 overexpresses the c-myc protooncogene. Plasmid pDACx carrying antisense human c-myc DNA and neo gene was introduced into HL-60 cells with lipofectin reagent. Upon DNA entering the tar-geted celis and expression of antisense transcripts to c-myc, C-MYC protein level, cell proliferation and colony-forming potentiality were all definitely inhibited.展开更多
While Upland cotton(Gossypium hirsutum L.) represents 95% of the world production,its genetic improvement is hindered by the shortage of effective genomic tools and resources.The
To demonstrate that low c-myc expression mightexert the effects on differentiation and survival ofleukemic cells, antisense technique was used. Human 2. 7kb c-myc DNA fragment containing exon l, intron 1 and127nt exon...To demonstrate that low c-myc expression mightexert the effects on differentiation and survival ofleukemic cells, antisense technique was used. Human 2. 7kb c-myc DNA fragment containing exon l, intron 1 and127nt exon 2 was ligated into retroviral vector pDOR-neoin reverse direction. This recombinant plasmid展开更多
Abiotic stress including drought,lowtemperature,ABA and high salt is major factoraffecting the plant growth.Isolation andfunctional study of abiotic stress-related genewill be helpful to elucidate the signaltransducti...Abiotic stress including drought,lowtemperature,ABA and high salt is major factoraffecting the plant growth.Isolation andfunctional study of abiotic stress-related genewill be helpful to elucidate the signaltransduction mechanism of the target gene underabiotic stress during the growth of plant.Byusing gene-transfer technique,the target gene isincorporated into the plant to improve theadaptation of plant to abiotic stress.展开更多
猪繁殖与呼吸综合征(porcine reproductive and respiratory syndrome,PRRS)是由猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)引起的以猪呼吸系统疾病和母猪繁殖障碍为主要特征的传染病,给全球...猪繁殖与呼吸综合征(porcine reproductive and respiratory syndrome,PRRS)是由猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)引起的以猪呼吸系统疾病和母猪繁殖障碍为主要特征的传染病,给全球养猪业造成了巨大的经济损失。然而,PRRS至今仍没有安全有效的疫苗和药物进行防治。全面深入理解PRRSV生命周期可以为PRRS防控提供新的思路。因此,本文在简述PRRSV生命周期的基础上,重点对病毒侵入、复制与转录、翻译及翻译后修饰、组装等过程的研究进展进行综述,以期为PRRSV致病机制及防控研究提供参考。展开更多
基金supported by the Natural Science Foundation of Hunan Province,China(2022JJ30886).
文摘Objective:Polycystic ovary syndrome(PCOS)is a common endocrine disorder that affects women’s health.This study aims to investigate gene and transcription factor(TF)expression differences between PCOS patients and healthy individuals using bioinformatics approaches,and to verify the function of key transcription factors,with the goal of providing new insights into the pathogenesis of PCOS.Methods:Differentially expressed genes(DEGs)and differentially expressed transcription factors(DETFs)between PCOS patients and controls were identified from the RNA sequencing dataset GSE168404 using bioinformatics methods.Functional enrichment analysis was performed using Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)databases.The expression and function of core transcription factors were further validated in ovarian tissues of PCOS model mice and control mice using Western blotting and reverse transcription quantitative polymerase chain reaction(RTqPCR).Results:A total of 332 DEGs were identified between PCOS patients and controls,including 259 upregulated and 73 downregulated genes in the PCOS group.19 DETFs were further screened,of which 16 were upregulated and 3 were downregulated in PCOS.The upregulated DETFs(including TFCP2L1,DACH1,ESR2,AFF3,SMAD9,ZNF331,HOPX,ATOH8,HIF3α,DPF3,HOXC4,HES1,ID1,JDP2,SOX4,and ID3)were primarily associated with lipid metabolism,development,and cell adhesion.Protein and mRNA expression analysis in PCOS model mice revealed significantly decreased levels of hypoxia-inducible factor(HIF)1αand HIF2α,and significantly increased expression of HIF3αcompared to control mice(all P<0.001).Conclusion:Significant differences in gene and TF expression exist between PCOS patients and healthy individuals.HIF-3αmay play a crucial role in PCOS and could serve as a novel biomarker for diagnosis and a potential therapeutic target.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(32101797)Central Public-interest Scientific Institution Basal Research Fund(No.1610162023020)。
文摘Climate deterioration,water shortages,and abiotic stress are the main threats worldwide that seriously affect cotton growth,yield,and fiber quality.Therefore,research on improving cotton yield and tolerance to biotic and abiotic stresses is of great importance.The NAC proteins are crucial and plant-specific transcription factors(TFs)that are involved in cotton growth,development,and stress responses.The comprehensive utilization of cotton NAC TFs in the improvement of cotton varieties through novel biotechnological methods is feasible.Based on cotton genomic data,genome-wide identification and analyses have revealed potential functions of cotton NAC genes.Here,we comprehensively summarize the recent progress in understanding cotton NAC TFs roles in regulating responses to drought,salt,and Verticillium wilt-related stresses,as well as leaf senescence and the development of fibers,xylem,and glands.The detailed regulatory network of NAC proteins in cotton is also elucidated.Cotton NAC TFs directly bind to the promoters of genes associated with ABA biosynthesis and secondary cell-wall formation,participate in several biological processes by interacting with related proteins,and regulate the expression of downstream genes.Studies have shown that the overexpression of NAC TF genes in cotton and other model plants improve their drought or salt tolerance.This review elucidates the latest findings on the functions and regulation of cotton NAC proteins,broadens our understanding of cotton NAC TFs,and lays a fundamental foundation for further molecular breeding research in cotton.
基金Supported by Cultivation of New Varieties of Genetically Modified Major Projects (2011ZX08004-005)Soybean Industry Technology System(CARS-04-PS08)
文摘Drought is one of the most important environmental constraints limiting plant growth, development and crop yield. Many drought-inducible genes have been identified by molecular and genomic analyses in Arabidopsis, rice and other crops. To better understand reaction mechanism of plant to drought tolerance, we mainly focused on introducing the research of transcription factors (TFs) in signal transduction and regulatory network of gene expression conferring drought. A TF could bind multiple target genes to increase one or more kinds of stress tolerance. Sometimes, several TFs might act together with a target gene. So drought-tolerance genes or TFs might respond to high-salinity, cold or other stresses. The crosstalk of multiple stresses signal pathways is a crucial aspect of understanding stress signaling.
文摘The human promyelocytic cell line HL-60 overexpresses the c-myc protooncogene. Plasmid pDACx carrying antisense human c-myc DNA and neo gene was introduced into HL-60 cells with lipofectin reagent. Upon DNA entering the tar-geted celis and expression of antisense transcripts to c-myc, C-MYC protein level, cell proliferation and colony-forming potentiality were all definitely inhibited.
文摘While Upland cotton(Gossypium hirsutum L.) represents 95% of the world production,its genetic improvement is hindered by the shortage of effective genomic tools and resources.The
文摘To demonstrate that low c-myc expression mightexert the effects on differentiation and survival ofleukemic cells, antisense technique was used. Human 2. 7kb c-myc DNA fragment containing exon l, intron 1 and127nt exon 2 was ligated into retroviral vector pDOR-neoin reverse direction. This recombinant plasmid
文摘Abiotic stress including drought,lowtemperature,ABA and high salt is major factoraffecting the plant growth.Isolation andfunctional study of abiotic stress-related genewill be helpful to elucidate the signaltransduction mechanism of the target gene underabiotic stress during the growth of plant.Byusing gene-transfer technique,the target gene isincorporated into the plant to improve theadaptation of plant to abiotic stress.
文摘猪繁殖与呼吸综合征(porcine reproductive and respiratory syndrome,PRRS)是由猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)引起的以猪呼吸系统疾病和母猪繁殖障碍为主要特征的传染病,给全球养猪业造成了巨大的经济损失。然而,PRRS至今仍没有安全有效的疫苗和药物进行防治。全面深入理解PRRSV生命周期可以为PRRS防控提供新的思路。因此,本文在简述PRRSV生命周期的基础上,重点对病毒侵入、复制与转录、翻译及翻译后修饰、组装等过程的研究进展进行综述,以期为PRRSV致病机制及防控研究提供参考。