Based on deterministic NaSch model, we propose a new cellular automation model for simulating train movement. In the proposed model, the reaction time of driver/train equipment is considered. Our study is focused on t...Based on deterministic NaSch model, we propose a new cellular automation model for simulating train movement. In the proposed model, the reaction time of driver/train equipment is considered. Our study is focused on the additional energy consumption arising by train delay around a traffic bottle (station). The simulation results demonstrate that the proposed model is suitable for simulating the train movement under high speed condition. Further, we discuss the relationship between the additional energy consumption and some factors which affect the formation of train delay, such as the maximum speed of trains and the station dwell time etc.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60634010 and 60776829)the Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0605)the State Key Laboratory of Rail Traffic Control and Safety of Beijing Jiaotong University (Grant No. RCS2008ZZ001)
文摘Based on deterministic NaSch model, we propose a new cellular automation model for simulating train movement. In the proposed model, the reaction time of driver/train equipment is considered. Our study is focused on the additional energy consumption arising by train delay around a traffic bottle (station). The simulation results demonstrate that the proposed model is suitable for simulating the train movement under high speed condition. Further, we discuss the relationship between the additional energy consumption and some factors which affect the formation of train delay, such as the maximum speed of trains and the station dwell time etc.