针对密集杂波背景中雷达微弱海面目标检测问题,提出一种基于修正Hough变换的检测前跟踪(Track Before Detect,TBD)新方法.在传统两级检测器的基础上增加点迹筛选环节,提出一种基于单帧观测数据的修正单帧Hough变换(Modified Single Houg...针对密集杂波背景中雷达微弱海面目标检测问题,提出一种基于修正Hough变换的检测前跟踪(Track Before Detect,TBD)新方法.在传统两级检测器的基础上增加点迹筛选环节,提出一种基于单帧观测数据的修正单帧Hough变换(Modified Single Hough Transform,MSHT)算法,在MSHT空间引入连续多帧共线和速度约束条件,实现对密集杂波点迹的有效抑制;针对海面多目标同时检测需要,改进传统批处理Hough变换算法,使观测空间原点自适应筛选后点迹数据,得到数据匹配Hough变换算法(Data-Matched Hough Transform,DMHT),以提升参数空间多目标分辨与检测能力.基于游程分布理论推导得到新检测器检测性能解析表达式.仿真和实测数据处理结果验证了本文方法的有效性,表明本文方法在密集杂波背景下具有良好检测性能.展开更多
Considering radar detection for multi-target recognition, a track before detect (TBD) algorithm based on Hough transform is adopted for identifying and tracking multi-target radar. By increasing the dimensions of th...Considering radar detection for multi-target recognition, a track before detect (TBD) algorithm based on Hough transform is adopted for identifying and tracking multi-target radar. By increasing the dimensions of the target characteristic parameters, the target detection and track accuracy is increased. Also, by multilevel filtering processing, the diverging points of the echo signal are condensed, which improves the performance of identifying and tracking multiple targets. Simulation results show that compared with traditional TBD algorithms, the presented algorithm has better performance in the aspects of multi-target tracking, detecting and distinguishing.展开更多
It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(M...It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method.展开更多
针对基于多模粒子滤波(Multiple Model Particle Filter,MMPF)的机动弱检测前跟踪(Track-Before-Detect,TBD)方法存在不能直接给出目标航迹以及粒子退化导致的目标漏检问题,提出一种基于航迹平滑(Track Smoothing,TS)的MMPF(TS-MMPF)机...针对基于多模粒子滤波(Multiple Model Particle Filter,MMPF)的机动弱检测前跟踪(Track-Before-Detect,TBD)方法存在不能直接给出目标航迹以及粒子退化导致的目标漏检问题,提出一种基于航迹平滑(Track Smoothing,TS)的MMPF(TS-MMPF)机动弱目标TBD算法。该方法利用MMPF的方法对机动弱目标量测数据进行处理,输出初步的检测和跟踪结果;将MMPF的输出结果重新定义为新的量测并进行目标的航迹起始、关联及滤波并给出目标的航迹;最后,利用航迹预测值对目标航迹进行平滑处理,有效解决粒子退化导致的漏检问题。仿真结果表明该算法可以有效提高目标航迹的稳健性。展开更多
针对图像序列中多目标检测和跟踪算法结构复杂、计算量大、性能降低等问题,提出一种基于代价参考粒子滤波器组的多目标检测前跟踪(Cost-reference particle filter bank based multi-target track-before-detect, CRPFB-MTBD)算法,将多...针对图像序列中多目标检测和跟踪算法结构复杂、计算量大、性能降低等问题,提出一种基于代价参考粒子滤波器组的多目标检测前跟踪(Cost-reference particle filter bank based multi-target track-before-detect, CRPFB-MTBD)算法,将多目标跟踪问题转换为序贯地检测和跟踪多个单目标的问题.首先,采用代价参考粒子滤波器组序贯地估计所有可能单目标状态序列;其次,基于所有可能单目标状态序列的欧氏距离和累积代价确定目标数量;最后,根据累积代价判断每个目标出现和消失的具体时刻.仿真实验验证了CRPFB-MTBD的优良性能,与基于传统粒子滤波的多目标检测前跟踪算法(Particle filter based multi-target track-before-detect, PF-MTBD)、基于概率假设密度的检测前跟踪算法(Probability hypothesis density based track-before-detect, PHD-TBD)和基于伯努利滤波的检测前跟踪算法(Bernoulli based track-before-detect, Bernoulli-TBD)相比, CRPFB-MTBD的目标状态序列和数量估计结果最佳,且平均单次运行时间极短.展开更多
文摘针对密集杂波背景中雷达微弱海面目标检测问题,提出一种基于修正Hough变换的检测前跟踪(Track Before Detect,TBD)新方法.在传统两级检测器的基础上增加点迹筛选环节,提出一种基于单帧观测数据的修正单帧Hough变换(Modified Single Hough Transform,MSHT)算法,在MSHT空间引入连续多帧共线和速度约束条件,实现对密集杂波点迹的有效抑制;针对海面多目标同时检测需要,改进传统批处理Hough变换算法,使观测空间原点自适应筛选后点迹数据,得到数据匹配Hough变换算法(Data-Matched Hough Transform,DMHT),以提升参数空间多目标分辨与检测能力.基于游程分布理论推导得到新检测器检测性能解析表达式.仿真和实测数据处理结果验证了本文方法的有效性,表明本文方法在密集杂波背景下具有良好检测性能.
基金supported by the Innovation Subject of the Shenyang Institute of Automation,Chinese Academy of Science(YOF5150501)
文摘Considering radar detection for multi-target recognition, a track before detect (TBD) algorithm based on Hough transform is adopted for identifying and tracking multi-target radar. By increasing the dimensions of the target characteristic parameters, the target detection and track accuracy is increased. Also, by multilevel filtering processing, the diverging points of the echo signal are condensed, which improves the performance of identifying and tracking multiple targets. Simulation results show that compared with traditional TBD algorithms, the presented algorithm has better performance in the aspects of multi-target tracking, detecting and distinguishing.
基金supported by the Natural Science Foundation of Anhui Province(1708085QF149)。
文摘It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method.
文摘针对基于多模粒子滤波(Multiple Model Particle Filter,MMPF)的机动弱检测前跟踪(Track-Before-Detect,TBD)方法存在不能直接给出目标航迹以及粒子退化导致的目标漏检问题,提出一种基于航迹平滑(Track Smoothing,TS)的MMPF(TS-MMPF)机动弱目标TBD算法。该方法利用MMPF的方法对机动弱目标量测数据进行处理,输出初步的检测和跟踪结果;将MMPF的输出结果重新定义为新的量测并进行目标的航迹起始、关联及滤波并给出目标的航迹;最后,利用航迹预测值对目标航迹进行平滑处理,有效解决粒子退化导致的漏检问题。仿真结果表明该算法可以有效提高目标航迹的稳健性。
文摘针对图像序列中多目标检测和跟踪算法结构复杂、计算量大、性能降低等问题,提出一种基于代价参考粒子滤波器组的多目标检测前跟踪(Cost-reference particle filter bank based multi-target track-before-detect, CRPFB-MTBD)算法,将多目标跟踪问题转换为序贯地检测和跟踪多个单目标的问题.首先,采用代价参考粒子滤波器组序贯地估计所有可能单目标状态序列;其次,基于所有可能单目标状态序列的欧氏距离和累积代价确定目标数量;最后,根据累积代价判断每个目标出现和消失的具体时刻.仿真实验验证了CRPFB-MTBD的优良性能,与基于传统粒子滤波的多目标检测前跟踪算法(Particle filter based multi-target track-before-detect, PF-MTBD)、基于概率假设密度的检测前跟踪算法(Probability hypothesis density based track-before-detect, PHD-TBD)和基于伯努利滤波的检测前跟踪算法(Bernoulli based track-before-detect, Bernoulli-TBD)相比, CRPFB-MTBD的目标状态序列和数量估计结果最佳,且平均单次运行时间极短.