期刊文献+
共找到2,149篇文章
< 1 2 108 >
每页显示 20 50 100
Finite sensor selection algorithm in distributed MIMO radar for joint target tracking and detection 被引量:7
1
作者 ZHANG Haowei XIE Junwei +2 位作者 GE Jiaang ZHANG Zhaojian LU Wenlong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期290-302,共13页
Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar sys... Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar system, especially in the hostile environment. In such conditions, an efficient subarray selection strategy is proposed for MIMO radar performing tasks of target tracking and detection. The goal of the proposed strategy is to minimize the worst-case predicted posterior Cramer-Rao lower bound(PCRLB) while maximizing the detection probability for a certain region. It is shown that the subarray selection problem is NP-hard, and a modified particle swarm optimization(MPSO) algorithm is developed as the solution strategy. A large number of simulations verify that the MPSO can provide close performance to the exhaustive search(ES) algorithm. Furthermore, the MPSO has the advantages of simpler structure and lower computational complexity than the multi-start local search algorithm. 展开更多
关键词 distributed MULTIPLE-INPUT multiple-output(MIMO)radar SUBARRAY selection TARGET tracking TARGET detection particle SWARM optimization(PSO)
在线阅读 下载PDF
基于改进YOLOv8-Track的芝麻单株蒴果检测计数研究
2
作者 李琛昊 王川 +5 位作者 李国强 赵巧丽 杨萍 王凯 常升龙 郑国清 《河南农业科学》 北大核心 2025年第4期155-166,共12页
单株蒴果数是芝麻产量构成的重要因素。为实现单株芝麻蒴果的准确检测计数,使用目标检测、多目标追踪等技术,动态追踪单株蒴果,有助于提高芝麻育种和栽培管理效率。针对芝麻蒴果小目标、生长密集、遮挡重叠等现象,以YOLOv8-Track为基准... 单株蒴果数是芝麻产量构成的重要因素。为实现单株芝麻蒴果的准确检测计数,使用目标检测、多目标追踪等技术,动态追踪单株蒴果,有助于提高芝麻育种和栽培管理效率。针对芝麻蒴果小目标、生长密集、遮挡重叠等现象,以YOLOv8-Track为基准模型,在特征融合网络中引入小目标检测头和Shuffle attention注意力机制,在模型后处理阶段引入MPDIOU损失函数,构建了SD-YOLOv8-Track模型。然后利用模型ByteTrack多目标追踪算法的ID计数方法,以芝麻单株旋转视频作为模型输入,追踪统计芝麻蒴果数。结果表明,以单幅图片为输入,SD-YOLOv8-Track模型检测蒴果的准确率、召回率、平均精度分别为92.25%、92.4%、92.58%,比原模型YOLOv8-Track分别提高5.94、6.6、6.31百分点。以单株旋转视频为输入,SD-YOLOv8-Track模型的多目标追踪准确率、多目标追踪精确率分别为89.42%、88.23%,比原模型分别提高4.23、4.60百分点。SD-YOLOv8-Track模型检测蒴果的平均计数准确率、漏检率、误检率分别为93.27%、3.85%、2.88%,平均计数准确率比原模型提高5.61百分点,漏检率和误检率比原模型分别降低3.84、1.77百分点。改进后的SD-YOLOv8-Track模型具有较好的芝麻单株蒴果检测性能,适用于芝麻单株蒴果的动态完整计数。 展开更多
关键词 芝麻蒴果 检测计数 多目标追踪 动态计数 Shuffle attention MPDIOU YOLOv8-track
在线阅读 下载PDF
A robust system for real-time pedestrian detection and tracking 被引量:2
3
作者 李琦 邵春福 赵熠 《Journal of Central South University》 SCIE EI CAS 2014年第4期1643-1653,共11页
A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow ... A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow removal, tracking, and object classification. The Gaussian mixture model was utilized to extract the moving object from an image sequence segmented by the mean-shift technique in the pre-processing module. Shadow removal was used to alleviate the negative impact of the shadow to the detected objects. A model-free method was adopted to identify pedestrians. The maximum and minimum integration methods were developed to integrate multiple cues into the mean-shift algorithm and the initial tracking iteration with the competent integrated probability distribution map for object tracking. A simple but effective algorithm was proposed to handle full occlusion cases. The system was tested using real traffic videos from different sites. The results of the test confirm that the system is reliable and has an overall accuracy of over 85%. 展开更多
关键词 image processing technique pedestrian detection tracking video camera
在线阅读 下载PDF
Road boundary estimation to improve vehicle detection and tracking in UAV video 被引量:1
4
作者 张立业 彭仲仁 +1 位作者 李立 王华 《Journal of Central South University》 SCIE EI CAS 2014年第12期4732-4741,共10页
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no... Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively. 展开更多
关键词 road boundary detection vehicle detection and tracking airborne video unmanned aerial vehicle Dempster-Shafer theory
在线阅读 下载PDF
基于改进YOLOv8和Byte Track的鲈鱼个体运动特征提取方法
5
作者 于佳禾 刘丽伟 +2 位作者 徐玲 于辉辉 陈英义 《农业工程学报》 北大核心 2025年第5期182-190,共9页
鱼类个体运动特征提取是分析鱼类行为的重要环节,为进一步解决鲈鱼行为识别中存在小目标个体和复杂背景导致检测难,以及在多条鲈鱼跟踪过程中因遮挡和非线性运动而频繁发生的ID错误切换问题,该研究提出了一种基于改进YOLOv8和ByteTrack... 鱼类个体运动特征提取是分析鱼类行为的重要环节,为进一步解决鲈鱼行为识别中存在小目标个体和复杂背景导致检测难,以及在多条鲈鱼跟踪过程中因遮挡和非线性运动而频繁发生的ID错误切换问题,该研究提出了一种基于改进YOLOv8和ByteTrack的鱼类个体运动特征提取方法。首先对YOLOv8n模型进行了轻量化优化,用ODConv替换了主干网络的下采样卷积,并用Wise-IoUv3 Loss代替了原有的CIoU Loss,以此降低模型大小并提高检测速度和精度。然后对ByteTrack算法分别进行优化,通过应用扩展和线性卡尔曼滤波来适应目标的非线性运动和加速变化,以及引入高斯轨迹插值后处理策略,减少了遮挡情况下的错误身份切换。改进后的YOLOv8算法在模型大小和参数上与原YOLOv8模型分别降低了约2/3,精度、召回率分别提升了0.4和0.5个百分点,具有较高的检测精度及良好的鲁棒性和实时性。改进后的ByteTrack算法平均多目标跟踪准确率(multiple object tracking accuracy,MOTA)为88.7%,多目标跟踪精度(multiple object tracking precision,MOTP)为83.8%,平均每个测试视频的ID切换次数(identity switches,IDs)仅为37,帧率(frames per second,FPS)为95帧/s,能够满足实时跟踪需求。该研究提出的改进YOLOv8和ByteTrack的鲈鱼个体运动特征提取方法能够在实际养殖场景下实现较为稳定的鲈鱼个体实时跟踪,可为大规模无接触式实际水产养殖监测提供技术支持。 展开更多
关键词 计算机视觉 深度学习 特征提取 目标检测 多目标跟踪
在线阅读 下载PDF
基于功率谱流形的信息几何DP-TBD算法
6
作者 吴昊 程永强 +2 位作者 杨政 黎湘 王宏强 《电子学报》 EI CAS CSCD 北大核心 2024年第1期193-200,共8页
针对复杂杂波背景下目标信杂比起伏而导致的漏检问题,本文结合信息几何检测器的性能优势与动态规划检测前跟踪(Dynamic Programming Track Before Detect,DP-TBD)的多帧信息积累能力,提出了基于功率谱流形的信息几何DP-TBD算法.该算法... 针对复杂杂波背景下目标信杂比起伏而导致的漏检问题,本文结合信息几何检测器的性能优势与动态规划检测前跟踪(Dynamic Programming Track Before Detect,DP-TBD)的多帧信息积累能力,提出了基于功率谱流形的信息几何DP-TBD算法.该算法利用功率谱流形与矩阵流形对偶关系,设计了功率谱信息几何检测器,将信息几何检测器的计算复杂度降低了近两个数量级.通过实测数据实验验证,功率谱DP-TBD算法可实现与矩阵DP-TBD算法相近的检测性能,并将运算时间降低为矩阵DP-TBD算法的3%~8%.此外,相较于信息几何检测器,功率谱DP-TBD可将检测信杂比(Signal-to-Clutter Ratio,SCR)提高2~3 dB. 展开更多
关键词 雷达目标检测 信息几何检测器 检测前跟踪 功率谱流形 动态规划
在线阅读 下载PDF
Multiple model efficient particle filter based track-before-detect for maneuvering weak targets 被引量:10
7
作者 BAO Zhichao JIANG Qiuxi LIU Fangzheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期647-656,共10页
It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(M... It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method. 展开更多
关键词 particle filter track-before-detect(tbd) maneuvering target tracking multiple model(MM)
在线阅读 下载PDF
基于改进YOLOv7-ByteTrack的干制哈密大枣缺陷检测与计数系统 被引量:10
8
作者 刘鑫 马本学 +2 位作者 李玉洁 陈金成 喻国威 《农业工程学报》 EI CAS CSCD 北大核心 2024年第3期303-312,共10页
针对目前无法同时对随机多列排布干制哈密大枣进行快速缺陷检测和统计计数问题,该研究设计了一款干制哈密大枣在线检测与计数系统。以干制哈密大枣为研究对象,利用工业相机拍摄传送带上随机排列的多类别缺陷干制哈密大枣视频为数据源,... 针对目前无法同时对随机多列排布干制哈密大枣进行快速缺陷检测和统计计数问题,该研究设计了一款干制哈密大枣在线检测与计数系统。以干制哈密大枣为研究对象,利用工业相机拍摄传送带上随机排列的多类别缺陷干制哈密大枣视频为数据源,采用改进的YOLOv7模型进行干制哈密大枣多类别缺陷检测并将检测结果作为后续多目标跟踪算法的输入;考虑到传送带上干制哈密大枣的外观相似性高以及排列密集等特点,该研究结合ByteTrack多目标跟踪算法的思想,设计了一种多类别干制哈密大枣的画线计数方法,实现了随机排布多类别干制哈密大枣的缺陷检测、准确定位及计数。试验结果表明:1)改进的YOLOv7模型浮点计算量为64.6 G,在干制哈密大枣目标检测数据的测试集上的平均检测精度、召回率、F_(1)平衡分数分别达到了98.03%、93.43%和95.00%,相比YOLOv7模型分别提高了4.40、6.88和7.00个百分点,浮点计算量下降了38.6%;2)基于改进YOLOv7为目标检测器开发的ByteTrack算法计数模型对干制哈密大枣计数的准确率为90.12%。该研究可为干制哈密大枣检测计数和分选分级提供技术支持。 展开更多
关键词 图像处理 目标检测 干制哈密大枣 多目标跟踪 YOLOv7
在线阅读 下载PDF
基于状态向量增强ByteTrack的新生羔羊活动量自动计算方法 被引量:2
9
作者 林庆霞 顾兴健 +5 位作者 陈新文 熊迎军 张国敏 王锋 张生福 陆明洲 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期146-155,共10页
为评价母羊繁殖性能并及时发现分娩栏中的弱活力羔羊,该研究提出一种基于状态向量增强ByteTrack的新生羔羊活动量自动计算方法。针对传统ByteTrack算法在跟踪目标被遮挡时易发生身份切换的问题,引入置信度信息增强的状态向量,提高跟踪... 为评价母羊繁殖性能并及时发现分娩栏中的弱活力羔羊,该研究提出一种基于状态向量增强ByteTrack的新生羔羊活动量自动计算方法。针对传统ByteTrack算法在跟踪目标被遮挡时易发生身份切换的问题,引入置信度信息增强的状态向量,提高跟踪算法区分遮挡与被遮挡羔羊的能力。针对跟踪目标丢失导致轨迹预测不准确的问题,构建目标丢失期间的虚拟轨迹并重更新轨迹状态向量,以纠正轨迹误差。在获取各羔羊活动轨迹后,计算各羔羊帧间移动距离统计羔羊活动量。在江苏海门山羊研发中心采集的新生羔羊活动视频数据集上,测试状态向量增强的ByteTrack多目标跟踪算法性能。测试结果表明,研究提出的多目标跟踪方法在高阶跟踪精度、多目标跟踪精度、多目标跟踪准确度、IDF1得分上分别达到80.8%、86.1%、84.5%和92.2%,相较于现有算法的最高精度,分别提高2.7、0.2、2.3和3.9个百分点。该研究所提方法能够实现同窝多只新生羔羊的稳定跟踪,为新生羔羊活动量的自动计算、母羊繁殖性能的自动评估提供技术支撑。 展开更多
关键词 动物 目标检测 多目标跟踪 数据关联 遮挡 羔羊活动量
在线阅读 下载PDF
改进YOLOv7+Bytetrack的小目标检测与追踪 被引量:10
10
作者 聂源 赖惠成 高古学 《计算机工程与应用》 CSCD 北大核心 2024年第12期189-202,共14页
近年来,目标检测技术已经相当成熟,但小目标检测一直是目标检测领域的一大挑战。为了解决这一问题,设计一种名为MFF-YOLOv7的小目标检测算法,该算法旨在提高小目标检测的准确率。设计级联双向特征金字塔KBiFPN,以及联合提出的多级感受... 近年来,目标检测技术已经相当成熟,但小目标检测一直是目标检测领域的一大挑战。为了解决这一问题,设计一种名为MFF-YOLOv7的小目标检测算法,该算法旨在提高小目标检测的准确率。设计级联双向特征金字塔KBiFPN,以及联合提出的多级感受野特征聚合模块MFA,来聚合浅层特征并增强特征的信息表达能力。为了解决小目标漏检问题,设计了新的解耦头和新的注意力机制。新的解耦头对小目标的检测能力更强,新的注意力机制可以重点关注感兴趣的小目标区域。引入了一种新的损失函数ECIOU,旨在加快模型的收敛速度。为了验证模型的性能,分别在三个小目标数据集上进行了实验。实验结果表明,MFF-YOLOv7算法提高了检测精度。同时,使用多目标追踪Bytetrack算法在MOT17和VisDrone2019-MOT两个多目标追踪数据集上对新模型进行了验证,进一步证明了其有效性。此外,MFF-YOLOv7算法在动态视频追踪中表现出了良好的性能。 展开更多
关键词 MFF-YOLOv7 小目标检测 多级感受野 多目标追踪 Bytetrack
在线阅读 下载PDF
基于自编码器结构与改进Bytetrack的低光照行人检测及跟踪算法 被引量:1
11
作者 任泽林 庞澜 +2 位作者 王超 李嘉恒 周方琰 《应用光学》 CAS 北大核心 2024年第3期616-629,共14页
针对夜间低光照场景下目标特征提取困难和跟踪不稳定的问题,提出了基于自编码器结构及改进Bytetrack的多目标行人检测及跟踪算法。在检测阶段,基于YOLOX(you only look once X)搭建多任务自编码变换模型框架,以一种自监督的方式考虑物... 针对夜间低光照场景下目标特征提取困难和跟踪不稳定的问题,提出了基于自编码器结构及改进Bytetrack的多目标行人检测及跟踪算法。在检测阶段,基于YOLOX(you only look once X)搭建多任务自编码变换模型框架,以一种自监督的方式考虑物理噪声模型和图像信号处理(image signal processing,ISP)的过程,通过对真实光照退化变换过程进行编码与解码学习内在视觉结构,并基于这种表示通过解码边界框坐标与类实现目标检测任务。为了抑制背景噪声的干扰,在目标解码器颈部网络引入自适应特征融合模块ASFF。跟踪阶段,基于Bytetrack算法进行改进,将基于Tranformer重识别网络提取到的外观嵌入信息与NSA卡尔曼滤波获得的运动信息通过自适应加权的方法完成数据关联,并通过Byte两次匹配的算法完成夜间行人的跟踪。在自建夜间行人检测数据集上测试检测模型的泛化能力,mAP@0.5达到了94.9%,结果表明本文的退化变换过程符合现实条件,具有良好的泛化能力。最后通过自建夜间行人跟踪数据集验证多目标跟踪性能,实验结果表明,本文提出的夜间低光照行人多目标跟踪算法MOTA(multiple object tracking accuracy)为89.55%,IDF1(identity F1 score)为88.34%,IDs(ID switches)为15。与基准方法Bytetrack相比,MOTA提高了10.72%,IDF1提高了6.19%,IDs减少了50%。结果表明,本文提出的基于自编码结构及改进Bytetrack的多目标跟踪算法可以有效解决在夜间低光照场景下行人跟踪困难的问题。 展开更多
关键词 多任务自编码变换 低光照 YOLOX 目标检测 多目标跟踪
在线阅读 下载PDF
Research for the orientation detection system using L-shape reticle
12
作者 Liu Guangcan Bai Tingzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期49-53,共5页
The basic scheme of the orientation detection system using L-shape reticle is introduced. The dimension of the patterns on the reticle of the system in practical applications is designed and an analysis of the princip... The basic scheme of the orientation detection system using L-shape reticle is introduced. The dimension of the patterns on the reticle of the system in practical applications is designed and an analysis of the principle of abstracting the orientation information of the target and the effects and formation method of self-adapting tracking gate is presented. The research result shows that the orientation detection system using L-shape reticle has a good effect on space-filtering, the signals that the orientation detection system sends out are easy to be processed by computer, its self-adapting tracking gate has a strong anti-interference ability, and the whole system's searching and tracking performances are quite high. 展开更多
关键词 Orientation detection system L-shape reticle Self-adapting tracking gate
在线阅读 下载PDF
A Parallel Algorithm for Corner Detection on Object Contour
13
作者 Lan YongchuanBeijing Institute of Remote Sensing Equipment,Beijing P.O.Box 3925 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1992年第1期56-63,共8页
A new parallel algorithm for corner detection on object contour is presented in the paper. In this algorithm whenever a point (pixel) is scanned, the k direction codes between the two sides of the point, which is on t... A new parallel algorithm for corner detection on object contour is presented in the paper. In this algorithm whenever a point (pixel) is scanned, the k direction codes between the two sides of the point, which is on the edge of an object, are obtained by k-step forward and backward boundary tracking. A comer is determined by the sum of the difference between the two weighted code chains. Note that the whole chain code sequence or boundary of an object is not necessary to be extracted at all in this algorithm, and the corners are obtained immediately once the image is scanned, furthermore, what humans perceive as corners can be detected and localized by this algorithm. 展开更多
关键词 Corner detection Boundary tracking Degree of sharpness
在线阅读 下载PDF
基于改进PP-YOLOE和ByteTrack算法的红外船舶目标检测跟踪方法 被引量:1
14
作者 姜杰 张立民 +1 位作者 刘凯 闫文君 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第11期291-297,共7页
针于无人机侦察采集到的红外影像,如何快速准确地检测到船舶目标,并进行连续跟踪,提出了一种基于改进PP-YOLOE和ByteTrack算法的红外船舶目标检测跟踪方法。对红外船舶目标检测过程中存在的多尺度、小目标、有遮挡的情况,在PP-YOLOE算... 针于无人机侦察采集到的红外影像,如何快速准确地检测到船舶目标,并进行连续跟踪,提出了一种基于改进PP-YOLOE和ByteTrack算法的红外船舶目标检测跟踪方法。对红外船舶目标检测过程中存在的多尺度、小目标、有遮挡的情况,在PP-YOLOE算法基础上,通过采用任务对齐学习(task alignment learning,TAL)、增加多采样路径、加强检测头的方式进行了相应的改进;对跟踪过程中通常存在遮挡容易导致跟踪丢失的情况,在ByteTrack算法基础上,通过将卡尔曼滤波与匈牙利算法相结合、增加ReID特征计算外观相似度的方法进行了一定的强化。实验结果表明,所提方法检测精度较高,跟踪效果较好,能够满足现实任务的需要。 展开更多
关键词 红外船舶 目标检测跟踪 PP-YOLOE 任务对齐学习 Bytetrack
在线阅读 下载PDF
BEV感知学习在自动驾驶中的应用综述 被引量:2
15
作者 黄德启 黄海峰 +1 位作者 黄德意 刘振航 《计算机工程与应用》 北大核心 2025年第6期1-21,共21页
自动驾驶感知模块中作为采集输入的传感器种类不断发展,要使多模态数据统一地表征出来变得愈加困难。BEV感知学习在自动驾驶感知任务模块中可以使多模态数据统一融合到一个特征空间,相比于其他感知学习模型拥有更好的发展潜力。从研究... 自动驾驶感知模块中作为采集输入的传感器种类不断发展,要使多模态数据统一地表征出来变得愈加困难。BEV感知学习在自动驾驶感知任务模块中可以使多模态数据统一融合到一个特征空间,相比于其他感知学习模型拥有更好的发展潜力。从研究意义、空间部署、准备工作、算法发展及评价指标五个方面总结了BEV感知模型具有良好发展潜力的原因。BEV感知模型从框架角度概括为四个系列:Lift-Splat-Lss系列、IPM逆透视转换、MLP视图转换及Transformer视图转换;从输入数据概括为两类:第一类是纯图像特征的输入包括单目摄像头输入和多摄像头输入,第二类在融合数据输入中不仅是简单的点云数据和图像特征的数据融合,还包括了以点云数据为引导或监督的知识蒸馏融合和以引导切片方式去划分高度段的融合。概述了多目标追踪、地图分割、车道线检测及3D目标检测四种自动驾驶任务在BEV感知模型当中的应用,并总结了目前BEV感知学习四个系列框架的缺点。 展开更多
关键词 BEV感知学习 视图转换 多模态数据融合 多目标追踪 地图分割 车道线检测及3D目标检测
在线阅读 下载PDF
基于深度学习的长时地面目标跟踪技术
16
作者 卢晓燕 沈猛 +5 位作者 王洁 李嘉恒 杨一洲 何曦 曹玉举 庞澜 《应用光学》 北大核心 2025年第2期343-354,共12页
目标跟踪作为图像处理领域的重要组成部分,广泛应用于智能视频监控、军事侦察等领域。但在面对物体形变以及遮挡等复杂应用场景时,相关滤波算法由于缺乏目标和背景判别区分以及遮挡状态判断等策略,存在跟错目标、缓慢漂移到背景等现象,... 目标跟踪作为图像处理领域的重要组成部分,广泛应用于智能视频监控、军事侦察等领域。但在面对物体形变以及遮挡等复杂应用场景时,相关滤波算法由于缺乏目标和背景判别区分以及遮挡状态判断等策略,存在跟错目标、缓慢漂移到背景等现象,在遮挡后目标重新出现时,缺乏重检测机制,这些问题导致了跟踪性能在实际工程中大幅下降。针对以上问题进行改进设计,首先在跟踪过程中,使用网络优化器更新多层深度特征提取网络,优化损失函数提高目标与背景的判别能力;其次,采用多重检测抗遮挡优化机制,确定跟踪器状态更新机制;最后,基于深度学习进行检测跟踪识别一体化设计,实现跟踪前典型目标的自动捕获,目标受遮挡后重新出现时实现对典型目标的重新捕获定位。在实验分析中,分别从跟踪精度、可视化定量损失以及算法速度等方面进行了性能验证。实测数据显示,本文采用的方法在以上方面性能表现良好,优于改进前的ECO(efficientconvolution operators for tracking)算法。 展开更多
关键词 深度学习 特征网络优化器 检测跟踪识别一体化 重新捕获
在线阅读 下载PDF
空间定位与特征泛化增强的铁路异物跟踪检测 被引量:1
17
作者 陈永 王镇 周方春 《北京航空航天大学学报》 北大核心 2025年第1期9-18,共10页
针对现有深度学习异物跟踪检测算法易受复杂环境、目标遮挡等影响,导致出现漏检及检测精度低等问题,提出了一种空间定位与特征泛化增强的铁路异物跟踪检测算法。提出改进多尺度级联GhostNet特征提取网络,提升对红外目标的特征提取能力;... 针对现有深度学习异物跟踪检测算法易受复杂环境、目标遮挡等影响,导致出现漏检及检测精度低等问题,提出了一种空间定位与特征泛化增强的铁路异物跟踪检测算法。提出改进多尺度级联GhostNet特征提取网络,提升对红外目标的特征提取能力;利用异物空间位置定位与泛化形态信息,设计空间定位与特征泛化增强模块,增强对复杂场景下位置移动与跟踪轨迹变化目标的检测精度;构建金字塔预测网络,得到红外铁路异物的检测锚框、类别及置信度信息;通过改进类别和置信度显示的DeepSORT跟踪算法,结合卡尔曼滤波与匈牙利算法实现红外弱光环境下铁路异物跟踪检测。实验结果表明:所提算法对铁路异物的跟踪检测精确度达到83.3%,平均检测速度为11.3帧/s;与比较算法相比,所提算法检测精度更高,对红外弱光场景下铁路异物跟踪检测具有较好的性能。 展开更多
关键词 机器视觉 异物检测 红外弱光 空间定位 特征泛化增强 目标跟踪
在线阅读 下载PDF
便携式丘陵山地轨道检测装置设计与试验分析
18
作者 吴伟斌 何兆铠 +4 位作者 张方任 郑泽锋 李俊霖 吕金洪 罗远强 《农机化研究》 北大核心 2025年第9期98-106,114,共10页
针对丘陵山地单轨轨道本体结构受高密度运营、高负荷载重和外界自然环境的作用导致腐蚀损伤、轨道变形、沉降等问题,设计了一种便携式单轨轨道检测装置以及时获取轨道信息并进行精准检修。该检测装置通过GPS传感器记录经纬度信息和多轴... 针对丘陵山地单轨轨道本体结构受高密度运营、高负荷载重和外界自然环境的作用导致腐蚀损伤、轨道变形、沉降等问题,设计了一种便携式单轨轨道检测装置以及时获取轨道信息并进行精准检修。该检测装置通过GPS传感器记录经纬度信息和多轴角度信息,对摄像头记录的画面进行目标检测从而实现轨道检测,最后将多种信息汇总实现地理信息交互。试验结果表明:检测装置对转弯半径检测的最低平均误差为3.68%;静态坡度检测的最大相对误差为4.55%,平均误差为2.53%;动态坡度检测的最大相对误差为-8.20%,平均误差为5.33%;采用YOLOv8-n模型对轨道表面缺陷进行检测,完成训练的模型m AP值为81.55%;地理位置信息可以准确地显示转弯半径、坡度和轨道表面损伤分析的结果。该检测装置可以较好地实现轨道转弯半径、坡度、损伤检测,可以应用于数字农业从而提升农业信息化水平,具有一定的应用前景。 展开更多
关键词 丘陵山地 轨道检测 单轨轨道 GPS 目标检测 损伤检测
在线阅读 下载PDF
基于改进YOLOv8的轨道小尺度异物入侵算法研究
19
作者 冯庆胜 付明雨 +2 位作者 姚泽圆 刘杨 梁天添 《现代电子技术》 北大核心 2025年第11期174-179,共6页
针对当前列车轨道障碍物检测方法存在的小目标检测精度低、模型过大且部署成本高等问题,文中提出一种改进的YOLOv8-SGFE轨道侵限物检测模型。首先,为了减少网络的计算量,在小目标检测模块SPD-Conv的基础上,设计了一个SGConv模块,并用其... 针对当前列车轨道障碍物检测方法存在的小目标检测精度低、模型过大且部署成本高等问题,文中提出一种改进的YOLOv8-SGFE轨道侵限物检测模型。首先,为了减少网络的计算量,在小目标检测模块SPD-Conv的基础上,设计了一个SGConv模块,并用其替换YOLOv8主干层中的普通卷积层;其次,为了增强模型的感知能力,将高效多尺度注意力EMA与C2f-Faster模块相结合,构成C2f-Faster-EMA模块,并用其替换YOLOv8中的C2f模块;最后,将改进后的YOLOv8-SGFE模型应用于自制的铁路轨道侵限物数据集。与YOLOv8模型相比,文中模型参数量下降36.04%,FLOPs由28.7×10^(9)减少到19×10^(9),在模型计算量大幅降低的情况下,mAP提高2.5%。实验结果表明,所提算法具有更高的检测精度,模型参数量及计算负载更小,不仅适用于复杂环境下的轨道障碍物检测,同时更易于部署到移动端设备中。 展开更多
关键词 轨道异物入侵 小目标检测 部分卷积 高效多尺度注意力 YOLOv8 轻量化
在线阅读 下载PDF
基于三维激光点云的船舶检测与跟踪
20
作者 黄磊 陈玥 +2 位作者 李赵春 祁良剑 程玉柱 《激光与红外》 北大核心 2025年第5期686-693,共8页
随着水上交通和航运事业的不断发展,河道行驶船舶的检测和跟踪越来越重要。目前基于图像的船舶检测与跟踪的方法已经较为成熟,但由于图像缺失深度信息,导致其不能直接获得船舶的3D尺寸和空间位置。而三维激光雷达生成的点云数据,天然携... 随着水上交通和航运事业的不断发展,河道行驶船舶的检测和跟踪越来越重要。目前基于图像的船舶检测与跟踪的方法已经较为成熟,但由于图像缺失深度信息,导致其不能直接获得船舶的3D尺寸和空间位置。而三维激光雷达生成的点云数据,天然携带精确的几何信息和距离信息,在船舶的检测和跟踪方面有巨大的发展潜力。三维点云的目标检测目前可分为基于经典点云算法的检测方式和基于深度学习的检测方式。若采用基于经典点云算法的检测方式对船舶进行检测,存在泛化性差、相临近的船舶点云无法区分等问题。因此本文采用基于焦点稀疏卷积的PV-RCNN++改进算法对河道行驶的船舶进行检测。该改进算法不仅能很好地区分各种情况下的船舶点云,还可以提高对远处船舶的识别能力,相比基于经典点云算法的目标检测方式,在实际场景中的检测精度提高了11.56%。在此基础上,本文提出了一种基于船舶间位置和3D尺寸关联程度进行多目标匹配与跟踪的方法,其中采用ICP配准计算船舶速度并预测船舶位置。实测数据验证结果表明,所提出的船舶跟踪方法具有稳定的跟踪性能,能够准确匹配相邻数据帧之间的船舶。 展开更多
关键词 三维点云 深度学习 船舶检测 PV-RCNN++ 焦点稀疏卷积 船舶跟踪 关联矩阵
在线阅读 下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部