期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于样本抽样和权重调整的SWA-Adaboost算法 被引量:2
1
作者 高敬阳 赵彦 《计算机工程》 CAS CSCD 2014年第9期248-251,256,共5页
根据分类算法是依据样本区分度进行分类的原理,提出增加样本属性以提高样本区分度的方法,在样本预处理阶段对所有样本增加一个属性值dmin以加强样本之间的区分度。针对原始Adaboost算法在抽样阶段由于抽样不均而导致对某些类训练不足的... 根据分类算法是依据样本区分度进行分类的原理,提出增加样本属性以提高样本区分度的方法,在样本预处理阶段对所有样本增加一个属性值dmin以加强样本之间的区分度。针对原始Adaboost算法在抽样阶段由于抽样不均而导致对某些类训练不足的问题,采用均衡抽样方法,保证在抽样阶段所抽取的不同类样本的数量比例不变。针对原始算法样本权重增长过快的问题,给出新的权重调整策略,引入样本错分计数量count(n),有效地抑制样本权重增长速度。给出一种改进的Adaboost算法,即SWA-Adaboost算法,并采用美国加州大学机器学习UCI数据库中6种数据集的数据对改进算法与原始算法进行实验对比,结果证明,改进算法SWA-Adaboost在泛化性能上优于Adaboost算法,泛化误差平均降低9.54%。 展开更多
关键词 样本预处理 均衡抽样 权重调整 泛化性能 类中心最小距离 样本区分度
在线阅读 下载PDF
基于面向分类准则的维数约简及其在人脸识别中的应用
2
作者 殷飞 焦李成 《计算机科学》 CSCD 北大核心 2014年第5期283-287,共5页
针对高维数据导致的维数灾难问题,提出了一种基于面向分类准则的维数约简方法。所提准则使每个训练样本在特征空间中与同类样本尽可能接近,而与异类样本尽可能疏远。首先对每个训练样本定义同类样本加权平均距离和异类样本加权平均距离... 针对高维数据导致的维数灾难问题,提出了一种基于面向分类准则的维数约简方法。所提准则使每个训练样本在特征空间中与同类样本尽可能接近,而与异类样本尽可能疏远。首先对每个训练样本定义同类样本加权平均距离和异类样本加权平均距离。然后基于上述两个概念分别定义总体同类距离和总体异类距离。以最小化总体同类距离和最大化总体异类距离为目的提出了面向分类的准则(Classification Oriented Criterion,COC)。最后,基于面向分类的准则推导出了一种新的维数约简方法。在公共人脸数据库ORL和Yale上的实验表明所提方法性能优于有代表性的维数约简方法。 展开更多
关键词 维数约简 总体同类距离 总体异类距离 面向分类的准则 人脸识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部