Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the sta...Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the staircase effect and preserve the edges when textures of image are extracted, a new image decomposition model is proposed in this paper. The proposed model is based on the to-tal generalized variation method which involves and balances the higher order of the structure. We also derive a numerical algorithm based on a primal-dual formulation that can be effectively imple-mented. Numerical experiments show that the proposed method can achieve a better trade-off between noise removal and texture extraction, while avoiding the staircase effect efficiently.展开更多
针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种自适应广义总变分(ATGV)降噪算法。该算法考虑了传统广义总变分(TGV)算法在降噪时模糊图像边缘信息的缺点,把可以有效区分图像平滑区和细节区的直觉模糊熵应用...针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种自适应广义总变分(ATGV)降噪算法。该算法考虑了传统广义总变分(TGV)算法在降噪时模糊图像边缘信息的缺点,把可以有效区分图像平滑区和细节区的直觉模糊熵应用到传统TGV中,对图像的不同区域进行不同强度的去噪,从而达到保护图像细节的效果。该算法首先采用滤波反投影(FBP)算法得到低剂量CT重建图像;然后利用基于直觉模糊熵的边缘指示函数对传统TGV模型进行改进;最后用改进后的模型对重建图像进行降噪处理。采用Shepp-Logan模型和数字胸腔模型(thorax phantom)仿真低剂量CT重建图像来验证算法的有效性。实验结果表明,所提算法的归一化均方距离(NMSD)和归一化平均绝对距离(NAAD)均比总变分(TV)降噪算法和广义总变分(TGV)降噪算法小,且可分别获得26.90 d B和44.58 d B的峰值信噪比(PSNR)。该算法在去除条形伪影的同时可以较好地保持图像的边缘和细节信息。展开更多
基金supported by the National Natural Science Foundation of China(6127129461301229)+1 种基金the Doctoral Research Fund of Henan University of Science and Technology(0900170809001751)
文摘Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the staircase effect and preserve the edges when textures of image are extracted, a new image decomposition model is proposed in this paper. The proposed model is based on the to-tal generalized variation method which involves and balances the higher order of the structure. We also derive a numerical algorithm based on a primal-dual formulation that can be effectively imple-mented. Numerical experiments show that the proposed method can achieve a better trade-off between noise removal and texture extraction, while avoiding the staircase effect efficiently.
文摘针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种自适应广义总变分(ATGV)降噪算法。该算法考虑了传统广义总变分(TGV)算法在降噪时模糊图像边缘信息的缺点,把可以有效区分图像平滑区和细节区的直觉模糊熵应用到传统TGV中,对图像的不同区域进行不同强度的去噪,从而达到保护图像细节的效果。该算法首先采用滤波反投影(FBP)算法得到低剂量CT重建图像;然后利用基于直觉模糊熵的边缘指示函数对传统TGV模型进行改进;最后用改进后的模型对重建图像进行降噪处理。采用Shepp-Logan模型和数字胸腔模型(thorax phantom)仿真低剂量CT重建图像来验证算法的有效性。实验结果表明,所提算法的归一化均方距离(NMSD)和归一化平均绝对距离(NAAD)均比总变分(TV)降噪算法和广义总变分(TGV)降噪算法小,且可分别获得26.90 d B和44.58 d B的峰值信噪比(PSNR)。该算法在去除条形伪影的同时可以较好地保持图像的边缘和细节信息。