期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Finite difference time domain method forward simulation of complex geoelectricity ground penetrating radar model 被引量:5
1
作者 戴前伟 冯德山 何继善 《Journal of Central South University of Technology》 EI 2005年第4期478-482,共5页
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c... The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model. 展开更多
关键词 ground penetrating radar finite difference time domain method forward simulation ideal frequency dispersion relationship
在线阅读 下载PDF
Modeling transmittance through submicron silver slit arrays 被引量:1
2
作者 王爱华 蔡九菊 陈玉彬 《Journal of Central South University》 SCIE EI CAS 2012年第8期2107-2114,共8页
Mid-infrared transmittance of submicron silver slit arrays was numerically studied with the finite difference time domain method. The slit width varies from 50 nm to 300 nm and a square feature may attach at either or... Mid-infrared transmittance of submicron silver slit arrays was numerically studied with the finite difference time domain method. The slit width varies from 50 nm to 300 nm and a square feature may attach at either or both slit sides. Although the side length of features is one or two orders of magnitude shorter than the wavelength, the attached nanoscale features can modify the transmittance significantly. The transmittance was also further investigated in detail by looking into the electromagnetic fields and Poynting vectors of selected slit geometries. The investigation results show that such change can be attributed to the cavity resonance effect inside the slit arrays. The work is of great importance to the wavelength-selective devices design in optical devices and thermal application fields. 展开更多
关键词 finite difference time domain method TRANSMITTANCE silver slit array cavity resonance effect
在线阅读 下载PDF
Modeling infrared radiative properties of nanoscale metallic complex slit arrays
3
作者 王爱华 牛义红 陈玉彬 《Journal of Central South University》 SCIE EI CAS 2014年第10期3927-3935,共9页
The radiative properties(absorptance, reflectance, and transmittance) of deep slits with five nanoscale slit profile variations at the transverse magnetic wave incidence were numerically investigated by employing the ... The radiative properties(absorptance, reflectance, and transmittance) of deep slits with five nanoscale slit profile variations at the transverse magnetic wave incidence were numerically investigated by employing the finite difference time domain method. For slits with attached features, their radiative properties can be much different due to the modified cavity geometry and dangled structures, even at wavelengths between 3 and 15 μm. The shifts of cavity resonance excitation result in higher transmittance through narrower slits at specific wavelengths and resonance modes are confirmed with the electromagnetic fields. Opposite roles possibly played by features in increasing or decreasing absorptance are determined by the feature position and demonstrated by Poynting vectors. Correlations among all properties of a representative slit array and the slit density are also comprehensively studied. When multiple slit types coexist in an array(complex slits), a wide-band transmittance or absorptance enhancement is feasible by merging spectral peaks contributed from each type of slits distinctively. Discrepancy among infrared properties of four selected slit combinations is explained while effects of slit density are also discussed. 展开更多
关键词 finite difference time domain method subwavelength structures radiative properties complex slit arrays cavity resonance
在线阅读 下载PDF
Modeling bidirectional reflection distribution function of microscale random rough surfaces
4
作者 王爱华 HSU P.F. 蔡九菊 《Journal of Central South University》 SCIE EI CAS 2010年第2期228-234,共7页
The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.Th... The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular. 展开更多
关键词 bidirectional reflection distribution fimction random rough surfaces Maxwell equations finite difference time domain method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部