Titanium has found extensive use in various engineering applications due to its attractive physical,mechanical, and chemical characteristics. However, titanium has relatively low hardness for use as an armour material...Titanium has found extensive use in various engineering applications due to its attractive physical,mechanical, and chemical characteristics. However, titanium has relatively low hardness for use as an armour material. ZrB2 was incorporated to the Ti matrix to form a Ti-based binary composites. In this study, powder metallurgy techniques were employed to disperse the ceramic particulates throughout the matrix material then consolidated through spark plasma sintering. The composites were densified at1300 ℃, pressure of 50 MPa, and holding time of 5 min. The microstructure and phase analysis of the sintered composites was carried out using SEM and XRD, while the hardness was determined using Vickers' microhardness tester. The SEM and XRD results confirmed the presence of the TiB whiskers which renowned with the improving the hardness of titanium. The hardness of the composite with 10 wt% ZrB_2 showed the highest hardness compared to that obtained for the 5 and 15 wt% ZrB_2 composites which was 495 and 571 Hv respectively.展开更多
用原位自生法制备了 Ti Al- B合金 ,并用 XRD、SEM对材料的相组成、微观组织和初生 Ti B2 晶体的界面结构特征进行了研究。结果表明 :该合金主要由 Ti Al和 Ti B2 两相组成 ;初生 Ti B2 呈六面棱柱状 ,在其 (0 0 0 1)面存在清晰的生长...用原位自生法制备了 Ti Al- B合金 ,并用 XRD、SEM对材料的相组成、微观组织和初生 Ti B2 晶体的界面结构特征进行了研究。结果表明 :该合金主要由 Ti Al和 Ti B2 两相组成 ;初生 Ti B2 呈六面棱柱状 ,在其 (0 0 0 1)面存在清晰的生长台阶、凸台状或柱棒状分枝 ,它们的各晶面取向与母体的取向一致。分析表明 ,在 Ti Al- B合金凝固过程中初生 Ti B2 晶体的固 -液界面是不稳定的 ,使固 -液界面由一完整光滑的界面逐渐演变为由多个相互独立的次级界面构成的复杂界面 ,次级界面亦为小面结构。展开更多
基金supported financially by the National Research Foundationthe support from the the Tshwane University of Technology, Pretoria, South Africa which helped to accomplish this work
文摘Titanium has found extensive use in various engineering applications due to its attractive physical,mechanical, and chemical characteristics. However, titanium has relatively low hardness for use as an armour material. ZrB2 was incorporated to the Ti matrix to form a Ti-based binary composites. In this study, powder metallurgy techniques were employed to disperse the ceramic particulates throughout the matrix material then consolidated through spark plasma sintering. The composites were densified at1300 ℃, pressure of 50 MPa, and holding time of 5 min. The microstructure and phase analysis of the sintered composites was carried out using SEM and XRD, while the hardness was determined using Vickers' microhardness tester. The SEM and XRD results confirmed the presence of the TiB whiskers which renowned with the improving the hardness of titanium. The hardness of the composite with 10 wt% ZrB_2 showed the highest hardness compared to that obtained for the 5 and 15 wt% ZrB_2 composites which was 495 and 571 Hv respectively.