The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influen...The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influenced by the morphology of the support.Hydrothermal synthesis was employed to produce different morphologies ofγ-Al_(2)O_(3):flower-likeγ-Al_(2)O_(3)(f)exposing(110)crystal faces,sheet-likeγ-Al_(2)O_(3)(s)revealing(100)crystal faces,and rod-likeγ-Al_(2)O_(3)(r)displaying(111)crystal faces,followed by loading PtCo nanoparticles.The exposed crystal faces of the support impact the alloying degree of the PtCo nanoparticles,and an increase in the alloying degree correlates with enhanced catalyst reactivity.Pt_(3)Co intermetallic compounds were identified onγ-Al_(2)O_(3)(f)exposing(110)crystal faces,and PtCo/γ-Al_(2)O_(3)(f)showed high catalytic activity in the CO-PROX reaction,achieving 100%CO conversion across a broad temperature range of 50−225°C.In contrast,only partial alloying of PtCo was observed onγ-Al_(2)O_(3)(s).Furthermore,no alloying between Pt and Co occurred in PtCo/γ-Al_(2)O_(3)(r),resulting in a reaction rate at 50°C that was merely 11%of that of PtCo/γ-Al_(2)O_(3)(f).The formation of Pt3Co intermetallic compounds led to a more oxidized state of Pt,which significantly diminished the adsorption of CO on Pt and augmented the active oxygen species,thereby facilitating the selective oxidation of CO.展开更多
The East China Sea(ECS)off the Coast of Zhoushan Archipelago,Zhejiang(ECS-CZA)is home to abundant fishery resources and an important spawning,feeding,and nursing ground for a variety of fish species.Due to long-term o...The East China Sea(ECS)off the Coast of Zhoushan Archipelago,Zhejiang(ECS-CZA)is home to abundant fishery resources and an important spawning,feeding,and nursing ground for a variety of fish species.Due to long-term overfishing,the ichthyoplankton structure has been dramatically altered.Understanding the species composition and distribution of fish eggs and larvae is one of the most essential tasks to accurately regulate fishery resources and formulate effective management policies;however,little is known about the ichthyoplankton in this region.In this study,an integrated strategy of morphology identification(MI)and mitochondrial COI DNA barcoding was used to identify species of fish eggs and larvae collected from the ECSCZA.MI revealed 15 fish egg species belonging to 12 families and 12 fish larva species belonging to 12 families;in contrast,DNA barcoding altogether identified 30 species,including 18 fish egg species and 13 fish larva species.One species was shared between the egg and larva samples.Our study offers useful tools and critical scientific information for further understanding the diversity,distribution,and conservation management of various ichthyoplankton species in the marine environment.展开更多
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research...The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
The development of high-performance non-fullerene acceptors with extended exciton diffusion lengths has positioned the sequential layer-by-layer(LBL)solution processing technique as a promising approach for fabricatin...The development of high-performance non-fullerene acceptors with extended exciton diffusion lengths has positioned the sequential layer-by-layer(LBL)solution processing technique as a promising approach for fabricating high-performance and large-area organic solar cells(OSCs).This method allows for the independent dissolution and deposition of donor and acceptor materials,enabling precise morphology control.In this review,we provide a comprehensive overview of the LBL processing technique,focusing on the morphology of the active layer.The swelling intercalation phase-separation(SIPS)model is introduced as the mainstream theory of morphology evolution,with a detailed discussion on vertical phase separation.We summarize recent strategies for morphology optimization.Additionally,we review the progress in LBL-based large-area device and module fabrication,as well as green processing approaches.Finally,we highlight current challenges and future prospects,paving the way for the commercialization of LBL-processed OSCs.展开更多
The biocompatibility evaluation of calcium phosphate based biomaterials is performed by tissue culture in vitro model. Three kinds of bioceramic materials which are potential to deal with bone trauma and/or conduct ti...The biocompatibility evaluation of calcium phosphate based biomaterials is performed by tissue culture in vitro model. Three kinds of bioceramic materials which are potential to deal with bone trauma and/or conduct tissue growth are recommodated. The biological research results show that human and animal osteoblast cells anchor the materials surface in two hours in culture. Confocal laser scanning microscopy (CLSM) demonstrated the normal cell distribution and proliferation on both of dense and porous biomaterials. Hydroxyapatite and tricalcium phosphate stimulate cell proliferation. However, DNA and protein synthesis were considerably limited and the apoptosis phenomenon would be present on the hydroxyapatite (HA) materials by adding Al, Mg elements. Several important methods of biocompatibility evaluation of implant materials are described and the related biological molecular techniques such as tissue culture, cell transfection, cellular DNA stain, and Lowry assay are involved in the present research.展开更多
The state of roof collapse in tunnels is actually three-dimensional, so constructing a three-dimensional failure collapse mechanism is crucial so as to reflect the realistic collapsing scopes more reasonably. Accordin...The state of roof collapse in tunnels is actually three-dimensional, so constructing a three-dimensional failure collapse mechanism is crucial so as to reflect the realistic collapsing scopes more reasonably. According to Hoek-Brown failure criterion and the upper bound theorem of limit analysis, the solution for describing the shape of roof collapse in circular or rectangular tunnels subjected to seepage forces is derived by virtue of variational calculation. The seepage forces calculated from the gradient of excess pore pressure distribution are taken as external loading in the limit analysis, and it is of great convenience to compute the pore pressure with pore pressure coefficient. Consequently, the effect of seepage forces is taken as a work rate of external force and incorporated into the upper bound limit analysis. The numerical results of collapse dimensions with different rock parameters show great validity and agreement by comparing with the results of that with two-dimensional failure mechanism.展开更多
Shield tunneling inevitably passes through a large number of pile foundations in urban areas.Thus,an accurate assessment of tunneling-induced pile displacement and potential damage becomes a critical part of shield co...Shield tunneling inevitably passes through a large number of pile foundations in urban areas.Thus,an accurate assessment of tunneling-induced pile displacement and potential damage becomes a critical part of shield construction.This study presents a mechanism research of pile-soil-tunnel interaction through Pasternak-based two-stage analysis method.In the first stage,based on Mindlin’s solution,the soil displacement fields induced by shield thrust force,cutterhead frictions,shield shell frictions and grouting pressure are derived.The analytical solution of threedimensional soil displacement field is established by introducing Pinto’s three-dimensional volume loss formula,which solves the problems that shield construction factors are not taken into account in Loganathan’s formula and only twodimensional soil displacement field can be obtained.In the second stage,based on Pasternak’s two-parameter foundation model,the analytical solution of pile displacement induced by shield tunneling in layered soil is derived.A case was found in the project of interval tunnels from Wanjiali Square to Furong District Government of Changsha Metro Line 5,where the shield tunnels were constructed near viaduct piles.The reliability of the analytical solution proposed in this study is verified by comparing with the field measured data and the results of finite element method(FEM).In addition,the comparisons of longitudinal,horizontal and vertical displacements of soil and pile foundation analyzed by the analytical solution and FEM provide corresponding theoretical basis,which has significant engineering guidance for similar projects.展开更多
An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable...An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.展开更多
A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating...A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.展开更多
Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of...Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.展开更多
Three-dimensional ordered macro/mesoporous carbon(3DOM/m-C)with high specific surface area was synthesized by colloid crystal template method with chemical activation by KOH and used as the adsorbent for removing mala...Three-dimensional ordered macro/mesoporous carbon(3DOM/m-C)with high specific surface area was synthesized by colloid crystal template method with chemical activation by KOH and used as the adsorbent for removing malachite green(MG)in aqueous solution.The microstructures of the adsorbents were characterized by FESEM,TEM and BET,and the effects of initial dye concentration,contact time,solution pH,and temperature on adsorption performance were investigated.The results show that the 3DOM/m-C exhibits extremely high adsorption capacity of 3541.1 mg/g within 2 h,which could be attributed to the novel ordered hierarchical structure with mesopores on three-dimensional ordered macroporous carbon walls.And the adsorption behavior conforms to the pseudo-second-order kinetic and Langmuir adsorption isotherm.3DOM/m-C can be recycled after being desorbed by absolute ethanol,and still maintains a high capacity of 2762.06 mg/g after 5 cycles.展开更多
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu...A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.展开更多
Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) sl...Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.展开更多
The effect of carbon content on the morphology of martensite in carbon steels has been studied in depth. It is found that not all the packet martensites obtained in carbon steels quenched from elevated temperature are...The effect of carbon content on the morphology of martensite in carbon steels has been studied in depth. It is found that not all the packet martensites obtained in carbon steels quenched from elevated temperature are lath martensite. The packet martensite obtained thus should be divided into two categories: packet thin plate martensite (i.e. lath martensite) and packet plate martensite. The former is only found in low carbon steels, the latter mainly in medium and high carbon steels. The morphology of martensite in steels with different carbon contents has been researched in detail using optical microscopy, SEM and TEM. A new criterion is proposed for identifying the category of martensite. Based on this new criterion, it is found that asquenched steels with Cc≤02% contains lath martensite; that with 02%<Cc<04% contains a mixture of lath and plate martensite. The structure of asquenched steels with Cc≥04% is completely of plate martensite. The curve of the relative volume percentage of martensite without internal twins versus carbon content has been redetermined. Finally, the misinterpretation of experimental results by previous investigators is analysed.展开更多
基金supported by the National Natural Science Foundation of China(22376063,21976057)the Fund of the National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2020A05)Fundamental Research Funds for the Central Universities.
文摘The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influenced by the morphology of the support.Hydrothermal synthesis was employed to produce different morphologies ofγ-Al_(2)O_(3):flower-likeγ-Al_(2)O_(3)(f)exposing(110)crystal faces,sheet-likeγ-Al_(2)O_(3)(s)revealing(100)crystal faces,and rod-likeγ-Al_(2)O_(3)(r)displaying(111)crystal faces,followed by loading PtCo nanoparticles.The exposed crystal faces of the support impact the alloying degree of the PtCo nanoparticles,and an increase in the alloying degree correlates with enhanced catalyst reactivity.Pt_(3)Co intermetallic compounds were identified onγ-Al_(2)O_(3)(f)exposing(110)crystal faces,and PtCo/γ-Al_(2)O_(3)(f)showed high catalytic activity in the CO-PROX reaction,achieving 100%CO conversion across a broad temperature range of 50−225°C.In contrast,only partial alloying of PtCo was observed onγ-Al_(2)O_(3)(s).Furthermore,no alloying between Pt and Co occurred in PtCo/γ-Al_(2)O_(3)(r),resulting in a reaction rate at 50°C that was merely 11%of that of PtCo/γ-Al_(2)O_(3)(f).The formation of Pt3Co intermetallic compounds led to a more oxidized state of Pt,which significantly diminished the adsorption of CO on Pt and augmented the active oxygen species,thereby facilitating the selective oxidation of CO.
文摘The East China Sea(ECS)off the Coast of Zhoushan Archipelago,Zhejiang(ECS-CZA)is home to abundant fishery resources and an important spawning,feeding,and nursing ground for a variety of fish species.Due to long-term overfishing,the ichthyoplankton structure has been dramatically altered.Understanding the species composition and distribution of fish eggs and larvae is one of the most essential tasks to accurately regulate fishery resources and formulate effective management policies;however,little is known about the ichthyoplankton in this region.In this study,an integrated strategy of morphology identification(MI)and mitochondrial COI DNA barcoding was used to identify species of fish eggs and larvae collected from the ECSCZA.MI revealed 15 fish egg species belonging to 12 families and 12 fish larva species belonging to 12 families;in contrast,DNA barcoding altogether identified 30 species,including 18 fish egg species and 13 fish larva species.One species was shared between the egg and larva samples.Our study offers useful tools and critical scientific information for further understanding the diversity,distribution,and conservation management of various ichthyoplankton species in the marine environment.
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
文摘The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金Project(22408404)supported by the National Natural Science Foundation of China。
文摘The development of high-performance non-fullerene acceptors with extended exciton diffusion lengths has positioned the sequential layer-by-layer(LBL)solution processing technique as a promising approach for fabricating high-performance and large-area organic solar cells(OSCs).This method allows for the independent dissolution and deposition of donor and acceptor materials,enabling precise morphology control.In this review,we provide a comprehensive overview of the LBL processing technique,focusing on the morphology of the active layer.The swelling intercalation phase-separation(SIPS)model is introduced as the mainstream theory of morphology evolution,with a detailed discussion on vertical phase separation.We summarize recent strategies for morphology optimization.Additionally,we review the progress in LBL-based large-area device and module fabrication,as well as green processing approaches.Finally,we highlight current challenges and future prospects,paving the way for the commercialization of LBL-processed OSCs.
文摘The biocompatibility evaluation of calcium phosphate based biomaterials is performed by tissue culture in vitro model. Three kinds of bioceramic materials which are potential to deal with bone trauma and/or conduct tissue growth are recommodated. The biological research results show that human and animal osteoblast cells anchor the materials surface in two hours in culture. Confocal laser scanning microscopy (CLSM) demonstrated the normal cell distribution and proliferation on both of dense and porous biomaterials. Hydroxyapatite and tricalcium phosphate stimulate cell proliferation. However, DNA and protein synthesis were considerably limited and the apoptosis phenomenon would be present on the hydroxyapatite (HA) materials by adding Al, Mg elements. Several important methods of biocompatibility evaluation of implant materials are described and the related biological molecular techniques such as tissue culture, cell transfection, cellular DNA stain, and Lowry assay are involved in the present research.
基金Project(2013CB036004) supported by the National Basic Research Program of ChinaProject(51178468) supported by the National Natural Science Foundation of ChinaProject(2013zzts235) supported by Innovation Fund of Central South University of China
文摘The state of roof collapse in tunnels is actually three-dimensional, so constructing a three-dimensional failure collapse mechanism is crucial so as to reflect the realistic collapsing scopes more reasonably. According to Hoek-Brown failure criterion and the upper bound theorem of limit analysis, the solution for describing the shape of roof collapse in circular or rectangular tunnels subjected to seepage forces is derived by virtue of variational calculation. The seepage forces calculated from the gradient of excess pore pressure distribution are taken as external loading in the limit analysis, and it is of great convenience to compute the pore pressure with pore pressure coefficient. Consequently, the effect of seepage forces is taken as a work rate of external force and incorporated into the upper bound limit analysis. The numerical results of collapse dimensions with different rock parameters show great validity and agreement by comparing with the results of that with two-dimensional failure mechanism.
基金Project(52078060) supported by the National Natural Science Foundation of ChinaProject(2020JJ4606)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2018IC19) supported by the International Cooperation and Development Project of Double-First-Class Scientific Research in Changsha University of Science&Technology,ChinaProject(18ZDXK05) supported by Innovative Program of Key Disciplines with Advantages and Characteristics of Civil Engineering of Changsha University of Science&Technology,China。
文摘Shield tunneling inevitably passes through a large number of pile foundations in urban areas.Thus,an accurate assessment of tunneling-induced pile displacement and potential damage becomes a critical part of shield construction.This study presents a mechanism research of pile-soil-tunnel interaction through Pasternak-based two-stage analysis method.In the first stage,based on Mindlin’s solution,the soil displacement fields induced by shield thrust force,cutterhead frictions,shield shell frictions and grouting pressure are derived.The analytical solution of threedimensional soil displacement field is established by introducing Pinto’s three-dimensional volume loss formula,which solves the problems that shield construction factors are not taken into account in Loganathan’s formula and only twodimensional soil displacement field can be obtained.In the second stage,based on Pasternak’s two-parameter foundation model,the analytical solution of pile displacement induced by shield tunneling in layered soil is derived.A case was found in the project of interval tunnels from Wanjiali Square to Furong District Government of Changsha Metro Line 5,where the shield tunnels were constructed near viaduct piles.The reliability of the analytical solution proposed in this study is verified by comparing with the field measured data and the results of finite element method(FEM).In addition,the comparisons of longitudinal,horizontal and vertical displacements of soil and pile foundation analyzed by the analytical solution and FEM provide corresponding theoretical basis,which has significant engineering guidance for similar projects.
基金Project(2012CB725301)supported by the National Basic Research Program of ChinaProject(201412015)supported by the National Special Fund for Surveying and Mapping Geographic Information Scientific Research in the Public Welfare of ChinaProject(212000168)supported by the Basic Survey-Mapping Program of National Administration of Surveying,Mapping and Geoinformation of China
文摘An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.
文摘A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.
基金Projects(51278382,51479050)supported by the National Natural Science Foundation of ChinaProject(2015CB057901)supported by the National Key Basic Research Program of China+3 种基金Project(201501035-03)supported by the Public Service Sector R&D Project of Ministry of Water Resource of ChinaProject(2014B06814)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(B13024)supported by the"111"ProjectProject(YK913004)supported by the Open Foundation of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earthrock Dam of the Ministry of Water Resources,China
文摘Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.
基金Projects(U1802254,51871201)supported by the National Natural Science Foundation of ChinaProject(LY18E040003)supported by the Zhejiang Provincial Natural Science Foundation,China
文摘Three-dimensional ordered macro/mesoporous carbon(3DOM/m-C)with high specific surface area was synthesized by colloid crystal template method with chemical activation by KOH and used as the adsorbent for removing malachite green(MG)in aqueous solution.The microstructures of the adsorbents were characterized by FESEM,TEM and BET,and the effects of initial dye concentration,contact time,solution pH,and temperature on adsorption performance were investigated.The results show that the 3DOM/m-C exhibits extremely high adsorption capacity of 3541.1 mg/g within 2 h,which could be attributed to the novel ordered hierarchical structure with mesopores on three-dimensional ordered macroporous carbon walls.And the adsorption behavior conforms to the pseudo-second-order kinetic and Langmuir adsorption isotherm.3DOM/m-C can be recycled after being desorbed by absolute ethanol,and still maintains a high capacity of 2762.06 mg/g after 5 cycles.
文摘A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.
文摘Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.
基金the Science+5 种基金 and Technalogy Commitee of Hunan Province
文摘The effect of carbon content on the morphology of martensite in carbon steels has been studied in depth. It is found that not all the packet martensites obtained in carbon steels quenched from elevated temperature are lath martensite. The packet martensite obtained thus should be divided into two categories: packet thin plate martensite (i.e. lath martensite) and packet plate martensite. The former is only found in low carbon steels, the latter mainly in medium and high carbon steels. The morphology of martensite in steels with different carbon contents has been researched in detail using optical microscopy, SEM and TEM. A new criterion is proposed for identifying the category of martensite. Based on this new criterion, it is found that asquenched steels with Cc≤02% contains lath martensite; that with 02%<Cc<04% contains a mixture of lath and plate martensite. The structure of asquenched steels with Cc≥04% is completely of plate martensite. The curve of the relative volume percentage of martensite without internal twins versus carbon content has been redetermined. Finally, the misinterpretation of experimental results by previous investigators is analysed.