A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu...A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.展开更多
In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) veloci...In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) velocity discontinuity surfaces. According to the virtual work principle, the difference theorem and the variation method, the collapse surface of double-layer rock mass is determined based on the Hoek-Brown failure criterion. The formula can be degenerated to a single-layer rock collapsing problem when the rock mass is homogeneous. To estimate the validity of the result, the numerical simulation software PLAXIS 3D is used to simulate the collapse of shallow tunnels with double-layer rock mass, and the comparative analysis shows that numerical results are in good agreement with upper-bound solutions. According to the results of parametric analysis, the potential range of collapse of a double-layer rock mass above a shallow cavity decreases with a decrease in A1/A2,σci1/σci2 and σtm1/σtm2 and an increase in B1/B2,γ1/γ2. The range will decrease with a decrease in support pressure q and increase with a decrease in surface overload σs. Therefore, reinforced supporting is beneficial to improve the stability of the cavity during actual construction.展开更多
A procedure of kinematic analysis is presented in this study to assess the reinforcement force of geosynthetics required under seismic loadings, particularly for steep slopes which are hardly able to maintain its stab...A procedure of kinematic analysis is presented in this study to assess the reinforcement force of geosynthetics required under seismic loadings, particularly for steep slopes which are hardly able to maintain its stability. Note that curved sloping surfaces widely exist in natural slopes, but existing literatures were mainly focusing on a planar surface in theoretical derivation, due to complicated calculations. Moreover, the non-uniform soil properties cannot be accounted for in conventional upper bound analysis. Pseudo-dynamic approach is used to represent horizontal and vertical accelerations which vary with time and space. In an effort to resolve the above problems, the discretization technique is developed to generate a discretized failure mechanism, decomposing the whole failure block into various components. An elementary analysis permits calculations of rates of work done by external and internal forces. Finally, the upper bound solution of the required reinforcement force is formulated based on the work rate-based balance equation. A parametric study is carried out to give insights on the implication of influential factors on the performance of geosynthetic-reinforced steep slopes.展开更多
Through analyzing the kinematics of the hydraulic manipulator operating system, according to the rules for seting up the D-H coordinate system, the generalized coordinate of the manipulator system is established. The ...Through analyzing the kinematics of the hydraulic manipulator operating system, according to the rules for seting up the D-H coordinate system, the generalized coordinate of the manipulator system is established. The rotating and moving joints are selected from the mechanism as joint variables. Each generalized transformation matrix of joints is worked out. The kinematics equation at the finger end of the manipulator is calculated. The obverse solution for the manipulator is gained. The geometrical operating parameters and primary technical specification of the manipulator system are simulated through the computer. The simulative result has shown that the manipulator operating system meets the working task requirements. This research provides theoretical basis for optimizing structural parameters of the manipulator operating. So it also is justified the feasibility for mechanical manipulators to be used in the engineering equipment platform of the hydraulic excavator.展开更多
Conventional no-till seeders should cut or remove crop straw and residue,when in operation and thus present a number of problems,including high performance requirements for the cutting component,high power consumption...Conventional no-till seeders should cut or remove crop straw and residue,when in operation and thus present a number of problems,including high performance requirements for the cutting component,high power consumption,dust raising and interference from intertwined straw.In view of this,in this study,a driving roller dibbling-type no-till seeding and hole-forming(DGR-NT-SHF)system was designed to be capable of penetrating soil and creating holes without requiring any special preparation of the surface covering.The core mechanism of this system consisted of a land wheel-driven driving roller and a duckbill-type roller seeder,which were internally tangent to one another.The rotating roller rolled the straw into a thin layer,and the duckbills extended from the roller and penetrated this thin layer of straw and subsequently formed the holes and planted the seeds.Based on kinematic analysis,a mathematical model was established to depict the relations between the rear angle of the duckbill(α),the front angle of the duckbill(β),the angular velocity of the duckbill-type roller seeder(ω0),the angular velocity of the roller(ω1),and the aperture of the duckbill outlet on the roller(θ).In contrast to a driven roller-type no-till seeding and hole-forming DNR-NT-SHF system,several parameters of the DGR-NT-SHF system were established for planting seeds at a plant spacing that was an integral multiple of 100 mm:the radius of the duckbill-type roller seeder,200 mm;radius of the roller,400 mm;α,23°;andβ,5°.Based on the analysis of the models using the MATLAB Image Processing Module with a relation betweenω1 and the number of outlets on the roller as the constraint,the optimal number of outlets on the roller and theω1/ω0 ratio were determined to be 21 and 4/7,respectively.Kinematic simulation on a digital prototype was performed using computer aided three-dimensional interactive application(CATIA)to observe the motion of the DGR-NT-SHF system,when the duckbills on the duckbill-type roller seeder were open and to determine the locations of the duckbills relative to the outlets.To ensure the duckbills could be successfully opened,the chord length of the outlets was ultimately determined to be 71 mm.The prototype test results showed that the DGR-NT-SHF system met the design requirements and that the operation was straightforward and reliable.In addition,compared to the DNR-NT-SHF system,the DGR-NT-SHF system performed better in penetration and exerted no impact on the duckbills,thus providing an effective technical option for no-till seeding.展开更多
Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) sl...Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.展开更多
As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general par...As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general parallel mechanism.In this paper,an unequal-length scissors mechanism(ULSM)is proposed by changing the position of the internal rotational joint through a basic scissors mechanism.A scissors hoop-rib truss deployable antenna mechanism(SHRTDAM)is constructed by replacing the parabolic rib with the ULSM.Kinematic analysis of SHRTDAM is conducted,and the degree of freedom(DOF)of the whole antenna mechanism is analyzed based on screw theory,the result showed that it has only one DOF.Velocity and acceleration characteristics of SHRTDAM are obtained by the screw derivative and rotation transformation.Based on Lagrange equation,dynamic model of this mechanism is established,the torque required to drive the mechanism is simulated and verified by Adams and MATLAB software.In addition,a ground experiment prototype of 1.5-m diameter was fabricated and a deployment test is conducted,which demonstrated the mobility and deployment performance of the whole mechanism.The mechanism proposed in this paper can provide a good reference for the design and analysis of large aperture space deployable antennas.展开更多
A novel high-speed parallel kinematic machine (PKM) named Delta-S parallel manipulator is proposed, which consists of a fixed base connected to a moving platform through three limbs with identical topology. Each lim...A novel high-speed parallel kinematic machine (PKM) named Delta-S parallel manipulator is proposed, which consists of a fixed base connected to a moving platform through three limbs with identical topology. Each limb is composed of one driving ann and one follower arm, herein, the latter includes two strings and one middle rod, all located in a same plane. Compared with similar manipulators with uniform parameters, the novel and unique topology as well as the addition of two strings of Delta-S manipulator can remove the clearance of the spherical joints, reduce the inertial load of components further, improve the positioning accuracy and dynamic performance, and so on. In order to formulate the kineto-static model of Delta-S manipulator, the kineto-static analyses and models of the driving arm, the generalized follower and the moving platform can be carried out by the D'ALEMBERT principle. For the sake of obtaining the force analytic results of strings, the deformation compatibility condition of strings and the middle rod are determined. Furthermore, in virtue of the assumption of small deformation and the linear superposition principle, the minimal pre-tightening force of the strings is calculated. The main results include that the loads of the strings and the middle rod must be larger than "zero" and the pre-tightening force over the workspace must be larger than the minimal pre-tightening force at any time within the workspace, which lay the foundation for the dynamic analysis and the prototype manufacture of the Delta-S manipulator.展开更多
A finite difference numerical method was adopted to evaluate the pile lateral behavior of pile supported embankment. A published case history was used to verify the proposed methodology. By simulating the case history...A finite difference numerical method was adopted to evaluate the pile lateral behavior of pile supported embankment. A published case history was used to verify the proposed methodology. By simulating the case history, the determination of parameters needed were verified. Then three embankments constructed on different ground conditions with different soil-pile relative stiffnesses were analyzed to study pile lateral behaviors including pile deflection and bending moment. The results show that pile deflections and bending moments induced by soil lateral deformation and embankment vertical load are different for piles at different positions under the same embankment. The relative stiffness between pile and soil affected by the properties of different reinforcing piles such as concrete pile and deep mixing method pile exert important effects on the pile lateral behavior and the pile's failure modes. Consequently, it is necessary to consider the different piles lateral behaviors and possible failure modes at different positions and the different piles proprieties with different reinforcing methods in the embankment stability analysis.展开更多
文摘A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.
基金Projects(51478477,51878074)supported by the National Natural Science Foundation of ChinaProject(2017-123-033)supported by the Guizhou Provincial Department of Transportation Foundation,ChinaProjects(2018zzts663,2018zzts656)supported by the Fundamental Research Funds for the Central Universities,China
文摘In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) velocity discontinuity surfaces. According to the virtual work principle, the difference theorem and the variation method, the collapse surface of double-layer rock mass is determined based on the Hoek-Brown failure criterion. The formula can be degenerated to a single-layer rock collapsing problem when the rock mass is homogeneous. To estimate the validity of the result, the numerical simulation software PLAXIS 3D is used to simulate the collapse of shallow tunnels with double-layer rock mass, and the comparative analysis shows that numerical results are in good agreement with upper-bound solutions. According to the results of parametric analysis, the potential range of collapse of a double-layer rock mass above a shallow cavity decreases with a decrease in A1/A2,σci1/σci2 and σtm1/σtm2 and an increase in B1/B2,γ1/γ2. The range will decrease with a decrease in support pressure q and increase with a decrease in surface overload σs. Therefore, reinforced supporting is beneficial to improve the stability of the cavity during actual construction.
文摘A procedure of kinematic analysis is presented in this study to assess the reinforcement force of geosynthetics required under seismic loadings, particularly for steep slopes which are hardly able to maintain its stability. Note that curved sloping surfaces widely exist in natural slopes, but existing literatures were mainly focusing on a planar surface in theoretical derivation, due to complicated calculations. Moreover, the non-uniform soil properties cannot be accounted for in conventional upper bound analysis. Pseudo-dynamic approach is used to represent horizontal and vertical accelerations which vary with time and space. In an effort to resolve the above problems, the discretization technique is developed to generate a discretized failure mechanism, decomposing the whole failure block into various components. An elementary analysis permits calculations of rates of work done by external and internal forces. Finally, the upper bound solution of the required reinforcement force is formulated based on the work rate-based balance equation. A parametric study is carried out to give insights on the implication of influential factors on the performance of geosynthetic-reinforced steep slopes.
文摘Through analyzing the kinematics of the hydraulic manipulator operating system, according to the rules for seting up the D-H coordinate system, the generalized coordinate of the manipulator system is established. The rotating and moving joints are selected from the mechanism as joint variables. Each generalized transformation matrix of joints is worked out. The kinematics equation at the finger end of the manipulator is calculated. The obverse solution for the manipulator is gained. The geometrical operating parameters and primary technical specification of the manipulator system are simulated through the computer. The simulative result has shown that the manipulator operating system meets the working task requirements. This research provides theoretical basis for optimizing structural parameters of the manipulator operating. So it also is justified the feasibility for mechanical manipulators to be used in the engineering equipment platform of the hydraulic excavator.
基金Supported by the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q14024)
文摘Conventional no-till seeders should cut or remove crop straw and residue,when in operation and thus present a number of problems,including high performance requirements for the cutting component,high power consumption,dust raising and interference from intertwined straw.In view of this,in this study,a driving roller dibbling-type no-till seeding and hole-forming(DGR-NT-SHF)system was designed to be capable of penetrating soil and creating holes without requiring any special preparation of the surface covering.The core mechanism of this system consisted of a land wheel-driven driving roller and a duckbill-type roller seeder,which were internally tangent to one another.The rotating roller rolled the straw into a thin layer,and the duckbills extended from the roller and penetrated this thin layer of straw and subsequently formed the holes and planted the seeds.Based on kinematic analysis,a mathematical model was established to depict the relations between the rear angle of the duckbill(α),the front angle of the duckbill(β),the angular velocity of the duckbill-type roller seeder(ω0),the angular velocity of the roller(ω1),and the aperture of the duckbill outlet on the roller(θ).In contrast to a driven roller-type no-till seeding and hole-forming DNR-NT-SHF system,several parameters of the DGR-NT-SHF system were established for planting seeds at a plant spacing that was an integral multiple of 100 mm:the radius of the duckbill-type roller seeder,200 mm;radius of the roller,400 mm;α,23°;andβ,5°.Based on the analysis of the models using the MATLAB Image Processing Module with a relation betweenω1 and the number of outlets on the roller as the constraint,the optimal number of outlets on the roller and theω1/ω0 ratio were determined to be 21 and 4/7,respectively.Kinematic simulation on a digital prototype was performed using computer aided three-dimensional interactive application(CATIA)to observe the motion of the DGR-NT-SHF system,when the duckbills on the duckbill-type roller seeder were open and to determine the locations of the duckbills relative to the outlets.To ensure the duckbills could be successfully opened,the chord length of the outlets was ultimately determined to be 71 mm.The prototype test results showed that the DGR-NT-SHF system met the design requirements and that the operation was straightforward and reliable.In addition,compared to the DNR-NT-SHF system,the DGR-NT-SHF system performed better in penetration and exerted no impact on the duckbills,thus providing an effective technical option for no-till seeding.
文摘Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.52105035 and 52075467)the Natural Science Foundation of Hebei Province of China(Grant No.E2021203109)+1 种基金the State Key Laboratory of Robotics and Systems(HIT)(Grant No.SKLRS-2021-KF-15)the Industrial Robot Control and Reliability Technology Innovation Center of Hebei Province(Grant No.JXKF2105).
文摘As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general parallel mechanism.In this paper,an unequal-length scissors mechanism(ULSM)is proposed by changing the position of the internal rotational joint through a basic scissors mechanism.A scissors hoop-rib truss deployable antenna mechanism(SHRTDAM)is constructed by replacing the parabolic rib with the ULSM.Kinematic analysis of SHRTDAM is conducted,and the degree of freedom(DOF)of the whole antenna mechanism is analyzed based on screw theory,the result showed that it has only one DOF.Velocity and acceleration characteristics of SHRTDAM are obtained by the screw derivative and rotation transformation.Based on Lagrange equation,dynamic model of this mechanism is established,the torque required to drive the mechanism is simulated and verified by Adams and MATLAB software.In addition,a ground experiment prototype of 1.5-m diameter was fabricated and a deployment test is conducted,which demonstrated the mobility and deployment performance of the whole mechanism.The mechanism proposed in this paper can provide a good reference for the design and analysis of large aperture space deployable antennas.
基金Projects(50175295,50675151) supported by the National Natural Science Foundation of ChinaProject(11JCZDJC22700) supported by Tianjin Science and Technology Program,ChinaProject(2007AA042001) supported by the National High Technology Research and Development Program of China
文摘A novel high-speed parallel kinematic machine (PKM) named Delta-S parallel manipulator is proposed, which consists of a fixed base connected to a moving platform through three limbs with identical topology. Each limb is composed of one driving ann and one follower arm, herein, the latter includes two strings and one middle rod, all located in a same plane. Compared with similar manipulators with uniform parameters, the novel and unique topology as well as the addition of two strings of Delta-S manipulator can remove the clearance of the spherical joints, reduce the inertial load of components further, improve the positioning accuracy and dynamic performance, and so on. In order to formulate the kineto-static model of Delta-S manipulator, the kineto-static analyses and models of the driving arm, the generalized follower and the moving platform can be carried out by the D'ALEMBERT principle. For the sake of obtaining the force analytic results of strings, the deformation compatibility condition of strings and the middle rod are determined. Furthermore, in virtue of the assumption of small deformation and the linear superposition principle, the minimal pre-tightening force of the strings is calculated. The main results include that the loads of the strings and the middle rod must be larger than "zero" and the pre-tightening force over the workspace must be larger than the minimal pre-tightening force at any time within the workspace, which lay the foundation for the dynamic analysis and the prototype manufacture of the Delta-S manipulator.
基金Project (50678115) supported by the National Natural Science Foundation of ChinaProject (07JCZDJC09800) supported by Tianjin Natural Science Foundation
文摘A finite difference numerical method was adopted to evaluate the pile lateral behavior of pile supported embankment. A published case history was used to verify the proposed methodology. By simulating the case history, the determination of parameters needed were verified. Then three embankments constructed on different ground conditions with different soil-pile relative stiffnesses were analyzed to study pile lateral behaviors including pile deflection and bending moment. The results show that pile deflections and bending moments induced by soil lateral deformation and embankment vertical load are different for piles at different positions under the same embankment. The relative stiffness between pile and soil affected by the properties of different reinforcing piles such as concrete pile and deep mixing method pile exert important effects on the pile lateral behavior and the pile's failure modes. Consequently, it is necessary to consider the different piles lateral behaviors and possible failure modes at different positions and the different piles proprieties with different reinforcing methods in the embankment stability analysis.