期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A FINITE VOLUME ELEMENT METHOD FOR THERMAL CONVECTION PROBLEMS 被引量:1
1
作者 芮洪兴 《Acta Mathematica Scientia》 SCIE CSCD 2004年第1期129-138,共10页
Consider the finite volume element method for the thermal convection problem with the infinite Prandtl number. The author uses a conforming piecewise linear function on a fine triangulation for velocity and temperatur... Consider the finite volume element method for the thermal convection problem with the infinite Prandtl number. The author uses a conforming piecewise linear function on a fine triangulation for velocity and temperature, and a piecewise constant function on a coarse triangulation for pressure. For general triangulation the optimal order H1 norm error estimates are given. 展开更多
关键词 Finite volume element method thermal convection problem error estimate
在线阅读 下载PDF
Thermal Convection in a Tilted Rectangular Cell with Aspect Ratio 0.5 被引量:1
2
作者 Qi Wang Bo-Lun Xu +2 位作者 Shu-Ning Xia Zhen-Hua Wan De-Jun Sun 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期52-55,共4页
Thermal convection in a three-dimensional tilted rectangular cell with aspect ratio 0.5 is studied using direct nu- merical simulations within both Oberbeck-Boussinesq (OB) approximation and strong non-Oberbeck-Bous... Thermal convection in a three-dimensional tilted rectangular cell with aspect ratio 0.5 is studied using direct nu- merical simulations within both Oberbeck-Boussinesq (OB) approximation and strong non-Oberbeck-Boussinesq (NOB) effects. The considered Rayleigh numbers Ra range from 105 to 107, the working fluid is air at 30OK, and the corresponding Prandtl number Pr is 0.71. Within the OB approximation, it is found that there exist multiple states for Ra = 105 and hysteresis for Ra = 106. For a relatively small tilt angle/3, the large-scale circulation can either orient along one of the the vertical diagonal planes (denoted by Ma mode) or orient parallel to the front wall (denoted by Mp mode). Which of the two modes transports heat more efficiently is not definitive, and it depends on the Rayleigh number Ra. For/Ta = 107 and β = 0°, the time-averaged flow field contains four rolls in the upper half and lower half of the cell, respectively, Md and Mp modes only developing in tilted cells. By investigating NOB effects in tilted convection for fixed/Ta = 106, it is found that the NOB effects on the Nusselt number Nu, the Reynolds number Re and the central temperature Tc for different β ranges are different. NOB effects can either increase or decrease Nu, Re and Tc when β is varied. 展开更多
关键词 thermal convection in a Tilted Rectangular Cell with Aspect Ratio 0.5 NOB RA
在线阅读 下载PDF
Effect of Thermal Convection on Density Segregation in Binary Granular Gases with Dissipative Lateral Walls
3
作者 李睿 李杰 +1 位作者 戴伟 陈木青 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期48-52,共5页
Molecular dynamics simulations are employed to investigate the effect of thermal convection induced only by dissipative lateral walls on density segregation of the strongly driven binary granular gases under low gravi... Molecular dynamics simulations are employed to investigate the effect of thermal convection induced only by dissipative lateral walls on density segregation of the strongly driven binary granular gases under low gravity conditions. It is found that the thermal convection due to dissipative lateral walls has significant influence on the segregation intensity of the system. The dominant factor in determining the degree of segregation achieved by the system is found to be the relative convection rate between differing species. Moreover, a qualitative explanation is proposed for the relationship between the thermal convection due to dissipative lateral walls and the observed segregation intensity profiles. 展开更多
关键词 Effect of thermal convection on Density Segregation in Binary Granular Gases with Dissipative Lateral Walls
在线阅读 下载PDF
Blood-based magnetohydrodynamic Casson hybrid nanofluid flow on convectively heated bi-directional porous stretching sheet with variable porosity and slip constraints
4
作者 Showkat Ahmad Lone Rawan Bossly +3 位作者 Fuad S.Alduais Afrah Al-Bossly Arshad Khan Anwar Saeed 《Chinese Physics B》 2025年第1期294-306,共13页
Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular ... Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work. 展开更多
关键词 hybrid nanofluid Casson fluid MAGNETOHYDRODYNAMICS variable porous space space/thermaldependent heat sources velocity slip and thermal convective conditions
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部