Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the...Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.展开更多
This study elaborates on the effects of matrix rigidity on the high-velocity impact behaviour of UHMWPE textile composites using experimental and numerical methods.Textile composite samples were manufactured of a plai...This study elaborates on the effects of matrix rigidity on the high-velocity impact behaviour of UHMWPE textile composites using experimental and numerical methods.Textile composite samples were manufactured of a plain-weave fabric(comprising Spectra?1000 fibres)and four different matrix materials.High-velocity impact tests were conducted by launching a spherical steel projectile to strike on the prepared samples via a gas gun.The experimental results showed that the textile composites gradually changed from a membrane stretching mode to a plate bending mode as the matrix rigidity and thickness increased.The composites deformed in the membrane stretching mode had higher impact resistance and energy absorption capacity,and it was found that the average energy absorption per ply was much higher in this mode,although the number of broken yarns was smaller in the perforated samples.Moreover,the flexible matrix composites always had higher perforation resistance but larger deformation than the rigid matrix counterparts in the tested thickness and velocity range.A novel numerical modelling approach with enhanced computational efficiency was proposed to simulate textile composites in mesoscale resolution.The simulation results revealed that stress and strain development in the more rigid matrix composite was localised in the vicinity of the impact location,leading to larger local deformation and inferior perforation resistance.展开更多
In order to overcome the wide crack of ordinary reinforced concrete (RC) at service stage which affects the service performance and durability of structures,a kind of concrete structure with skin textile reinforcement...In order to overcome the wide crack of ordinary reinforced concrete (RC) at service stage which affects the service performance and durability of structures,a kind of concrete structure with skin textile reinforcement is proposed,namely a part of concrete cover of RC members is replaced by textile reinforced concrete (TRC).The flexural experimental results indicate that when the reinforcement ratios of steel bars are constant,compared with control beams,the average value of crack loads of the beams,whose reinforcement ratios of textile are 0.018%,0.036% and 0.055%,increases by 15.5%,20.4% and 31.1%,respectively,the average value of yield loads respectively increases by 12.5%,19.9% and 21.1% and the average value of ultimate loads respectively increases by 8.5%,26.0% and 44.0%,respectively.Considerable reduction in cracks width and spacing is observed for specimens with a TRC layer,and when the beams yield,the maximum crack width of the beam with textile stuck no sand and the beam with textile stuck sand is reduced by around 60% and 70%,respectively.Surface treatment of textile and mixing polypropylene fiber into fine grained concrete contribute to enhance the service performance of the flexural element.Embedding U-shaped hoop has almost no effect on the control of the crack width.Finally,the calculation method of ultimate bearing capacity of this flexural component with TRC layer was presented.Comparison between the calculated and the experimental values reveals satisfactory agreement,and the maximum error is no more than 6%.展开更多
Cotton(Gossypium hirsutum L.)is one of the most important global crops that supports the textile industry and pro-vides a living for millions of farmers.The constantly increasing demand needs a significant rise in cot...Cotton(Gossypium hirsutum L.)is one of the most important global crops that supports the textile industry and pro-vides a living for millions of farmers.The constantly increasing demand needs a significant rise in cotton production.Genome editing technology,specifically with clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)tools,has opened new possibilities for trait development in cotton.It allows pre-cise and efficient manipulation within the cotton genome when compared with other genetic engineering tools.Current developments in CRISPR/Cas technology,including prime editing,base editing,and multiplexing editing,have expanded the scope of traits in cotton breeding that can be targeted.CRISPR/Cas genome editing has been employed to generate effectively CRISPRized cotton plants with enhanced agronomic traits,including fiber yield and quality,oil improvement,stress resistance,and enhanced nutrition.Here we summarized the various target genes within the cotton genome which have been successfully altered with CRISPR/Cas tools.However,some challenges remain,cotton is tetraploid genome having redundant gene sets and homologs making challenges for genome edit-ing.To ensure specificity and avoiding off-target effects,we need to optimize various parameters such as target site,guide RNA design,and choosing right Cas variants.We outline the future prospects of CRISPR/Cas in cotton breeding,suggesting areas for further research and innovation.A combination of speed breeding and CRISPR/Cas might be useful for fastening trait development in cotton.The potentials to create customized cotton cultivars with enhanced traits to meet the higher demands for the agriculture and textile industry.展开更多
Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bend...Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bending method was used to analyze the influence of the salt concentration,the damage degree and the coupled effect of the environment and load on the bending performance of TRC-strengthened beams with a secondary load.The results showed that as the salt concentration increased,the crack width and mid-span deflection of the beam quickly increased,and its bearing capacity decreased.As the damage degree increased,the early-stage crack development and mid-span deflection of the beam were less affected and the ultimate bearing capacity significantly decreased.In addition,the coupled effect of the environment and load on the beams with a secondary load was significant.As the sustained load increased,the ultimate bearing capacity of the strengthened beam decreased,and cracks developed faster in the later stage.In addition,the mid-span deflection of the beam decreased at the same load level because of the influence of the initial deflection due to the sustained load corrosion.展开更多
In order to examine the possibility to improve its camouflage properties standard cotton fabric with camouflage print was impregnated with poly(vinyl butyral),PVB and fullerene-like nanoparticles of tungsten disulfide...In order to examine the possibility to improve its camouflage properties standard cotton fabric with camouflage print was impregnated with poly(vinyl butyral),PVB and fullerene-like nanoparticles of tungsten disulfide,PVB/IF-WS_(2).FTIR analysis excluded any possible chemical interaction of IF-WS_(2) with PVB and the fabric.The camouflage behavior of the impregnated fabric has been examined firstly in the VIS part of the spectrum.Diffuse reflection,specular gloss and color coordinates were measured for three different shades(black,brown and dark green).Thermal imaging was applied to examine the camouflage abilities of this impregnation in IR part of the spectrum.The obtained results show that PVB/IF-WS_(2) impregnation system induced enhacement of the materials camouflage properties,i.e.that IF-WS_(2) have a positive effect on spectrophotometric characteristics of the fabric.展开更多
文摘Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.
文摘This study elaborates on the effects of matrix rigidity on the high-velocity impact behaviour of UHMWPE textile composites using experimental and numerical methods.Textile composite samples were manufactured of a plain-weave fabric(comprising Spectra?1000 fibres)and four different matrix materials.High-velocity impact tests were conducted by launching a spherical steel projectile to strike on the prepared samples via a gas gun.The experimental results showed that the textile composites gradually changed from a membrane stretching mode to a plate bending mode as the matrix rigidity and thickness increased.The composites deformed in the membrane stretching mode had higher impact resistance and energy absorption capacity,and it was found that the average energy absorption per ply was much higher in this mode,although the number of broken yarns was smaller in the perforated samples.Moreover,the flexible matrix composites always had higher perforation resistance but larger deformation than the rigid matrix counterparts in the tested thickness and velocity range.A novel numerical modelling approach with enhanced computational efficiency was proposed to simulate textile composites in mesoscale resolution.The simulation results revealed that stress and strain development in the more rigid matrix composite was localised in the vicinity of the impact location,leading to larger local deformation and inferior perforation resistance.
基金Project(51108451)supported by the National Natural Science Foundation of ChinaProject(BK2011220)supported by the Natural Science Foundation of Jiangsu Province,China+2 种基金Projects(2010QNA45,2011FZA4017)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012M511817)supported by the Postdoctoral Science Foundation of ChinaProject(1102082C)supported by the Postdoctoral Science Foundation of Jiangsu Province,China
文摘In order to overcome the wide crack of ordinary reinforced concrete (RC) at service stage which affects the service performance and durability of structures,a kind of concrete structure with skin textile reinforcement is proposed,namely a part of concrete cover of RC members is replaced by textile reinforced concrete (TRC).The flexural experimental results indicate that when the reinforcement ratios of steel bars are constant,compared with control beams,the average value of crack loads of the beams,whose reinforcement ratios of textile are 0.018%,0.036% and 0.055%,increases by 15.5%,20.4% and 31.1%,respectively,the average value of yield loads respectively increases by 12.5%,19.9% and 21.1% and the average value of ultimate loads respectively increases by 8.5%,26.0% and 44.0%,respectively.Considerable reduction in cracks width and spacing is observed for specimens with a TRC layer,and when the beams yield,the maximum crack width of the beam with textile stuck no sand and the beam with textile stuck sand is reduced by around 60% and 70%,respectively.Surface treatment of textile and mixing polypropylene fiber into fine grained concrete contribute to enhance the service performance of the flexural element.Embedding U-shaped hoop has almost no effect on the control of the crack width.Finally,the calculation method of ultimate bearing capacity of this flexural component with TRC layer was presented.Comparison between the calculated and the experimental values reveals satisfactory agreement,and the maximum error is no more than 6%.
文摘Cotton(Gossypium hirsutum L.)is one of the most important global crops that supports the textile industry and pro-vides a living for millions of farmers.The constantly increasing demand needs a significant rise in cotton production.Genome editing technology,specifically with clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)tools,has opened new possibilities for trait development in cotton.It allows pre-cise and efficient manipulation within the cotton genome when compared with other genetic engineering tools.Current developments in CRISPR/Cas technology,including prime editing,base editing,and multiplexing editing,have expanded the scope of traits in cotton breeding that can be targeted.CRISPR/Cas genome editing has been employed to generate effectively CRISPRized cotton plants with enhanced agronomic traits,including fiber yield and quality,oil improvement,stress resistance,and enhanced nutrition.Here we summarized the various target genes within the cotton genome which have been successfully altered with CRISPR/Cas tools.However,some challenges remain,cotton is tetraploid genome having redundant gene sets and homologs making challenges for genome edit-ing.To ensure specificity and avoiding off-target effects,we need to optimize various parameters such as target site,guide RNA design,and choosing right Cas variants.We outline the future prospects of CRISPR/Cas in cotton breeding,suggesting areas for further research and innovation.A combination of speed breeding and CRISPR/Cas might be useful for fastening trait development in cotton.The potentials to create customized cotton cultivars with enhanced traits to meet the higher demands for the agriculture and textile industry.
基金Project(2017XKZD09)supported by the Fundamental Research Funds for the Central Universities,China
文摘Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bending method was used to analyze the influence of the salt concentration,the damage degree and the coupled effect of the environment and load on the bending performance of TRC-strengthened beams with a secondary load.The results showed that as the salt concentration increased,the crack width and mid-span deflection of the beam quickly increased,and its bearing capacity decreased.As the damage degree increased,the early-stage crack development and mid-span deflection of the beam were less affected and the ultimate bearing capacity significantly decreased.In addition,the coupled effect of the environment and load on the beams with a secondary load was significant.As the sustained load increased,the ultimate bearing capacity of the strengthened beam decreased,and cracks developed faster in the later stage.In addition,the mid-span deflection of the beam decreased at the same load level because of the influence of the initial deflection due to the sustained load corrosion.
基金The authors acknowledge the support of Ministry of Education,Science and Technological Development of the Republic of Serbia,research grant No.451-03-68/2020-14/200325 and 451-03-68/2020-14/200287,as well as COST Action CERTBOND(CA18120)and COST Action CONTEXT(CA17107).
文摘In order to examine the possibility to improve its camouflage properties standard cotton fabric with camouflage print was impregnated with poly(vinyl butyral),PVB and fullerene-like nanoparticles of tungsten disulfide,PVB/IF-WS_(2).FTIR analysis excluded any possible chemical interaction of IF-WS_(2) with PVB and the fabric.The camouflage behavior of the impregnated fabric has been examined firstly in the VIS part of the spectrum.Diffuse reflection,specular gloss and color coordinates were measured for three different shades(black,brown and dark green).Thermal imaging was applied to examine the camouflage abilities of this impregnation in IR part of the spectrum.The obtained results show that PVB/IF-WS_(2) impregnation system induced enhacement of the materials camouflage properties,i.e.that IF-WS_(2) have a positive effect on spectrophotometric characteristics of the fabric.