期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Adaptive Predefined-Time Attitude Tracking Control for Quadrotor Using a Novel Terminal Sliding Mode Approach
1
作者 Tianshuo Ge Tengshuo Dong +1 位作者 Baihai Zhang Fenxi Yao 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期530-546,共17页
This paper proposes an adaptive predefined-time terminal sliding mode control(APTSMC)scheme for attitude tracking control of a quadrotor.To create this,an adaptive predefined-time stability controller based on a termi... This paper proposes an adaptive predefined-time terminal sliding mode control(APTSMC)scheme for attitude tracking control of a quadrotor.To create this,an adaptive predefined-time stability controller based on a terminal sliding mode is constructed.The upper bound of convergence time in the proposed scheme can be adjusted by the explicit parameters during the design process of the controller.In addition,it is proved that the attitude tracking error will converge within two periods of the preset time.These two periods are set between two ranges:From the initial values to the sliding mode surface and from the sliding mode surface to the region near the origin.Furthermore,an adaptive law is adopted to eliminate unknown external disturbances and the effects of the uncertainties in the quadrotor model,so it is unnecessary to require the prior knowledge of the upper bound of the perturbations.Simulation results are produced and comparative case studies are carried out to demonstrate that the proposed scheme has faster convergence speed and smaller tracking errors. 展开更多
关键词 predefined-time QUADROTOR attitude tracking control adaptive terminal sliding mode
在线阅读 下载PDF
Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller 被引量:3
2
作者 王东风 张金营 王晓燕 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期178-184,共7页
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional... This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme. 展开更多
关键词 fractional-order chaotic system SYNCHRONIZATION terminal sliding mode control UNCERTAINTY DISTURBANCE
在线阅读 下载PDF
Terminal Sliding Mode Fuzzy Control Based on Multiple Sliding Surfaces for Nonlinear Ship Autopilot Systems 被引量:2
3
作者 袁雷 吴汉松 《Journal of Marine Science and Application》 2010年第4期425-430,共6页
A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the p... A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms. 展开更多
关键词 ship course control unmatched uncertainty multiple sliding mode control nonsingular terminal sliding mode control ROBUSTNESS
在线阅读 下载PDF
Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs 被引量:1
4
作者 Mohammad Pourmahmood Aghababa Hassan Feizi 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期107-116,共10页
This paper deals with the design of a novel nonsingular terminal sliding mode controller for finite-time synchro-nization of two different chaotic systems with fully unknown parameters and nonlinear inputs. We propose... This paper deals with the design of a novel nonsingular terminal sliding mode controller for finite-time synchro-nization of two different chaotic systems with fully unknown parameters and nonlinear inputs. We propose a novel nonsingular terminal sliding surface and prove its finite-time convergence to zero. We assume that both the master's and the slave's system parameters are unknown in advance. Proper adaptation laws are derived to tackle the unknown parameters. An adaptive sliding mode control law is designed to ensure the existence of the sliding mode in finite time. We prove that both reaching and sliding mode phases are stable in finite time. An estimation of convergence time is given. Two illustrative examples show the effectiveness and usefulness of the proposed technique. It is worthwhile noticing that the introduced nonsingular terminal sliding mode can be applied to a wide variety of nonlinear control problems. 展开更多
关键词 nonsingular terminal sliding mode finite-time synchronization uncertain parameter nonlinear input
在线阅读 下载PDF
Nonsingular Fast Terminal Sliding Mode Control Based on Nonlinear Disturbance Observer for a Quadrotor 被引量:1
5
作者 ZHAO Jing WANG Peng +2 位作者 SUN Yanfei XU Fengyu XIE Fei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第2期219-230,共12页
Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is ... Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is proposed to estimate the actual values of uncertainties and disturbances.Second,the NFTSM controller based on the reaching law is designed for the attitude subsystem(inner loop),and the control strategy can ensure Euler angles’fast convergence and stability of the attitude subsystem.Moreover,the NFTSMC strategy combined with backstepping is proposed for the position subsystem(outer loop),which can ensure subsystem tracking performance.Finally,comparative simulations show the trajectory tracking performance of the proposed method is superior to that of the traditional sliding mode control(SMC)and the SM integral backstepping control under uncertainties and disturbances. 展开更多
关键词 quadrotor aircraft nonlinear disturbance observer(NDO) nonsingular fast terminal sliding mode control(NFTSMC) disturbances
在线阅读 下载PDF
Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch
6
作者 Safa Khari Zahra Rahmani Behrooz Rezaie 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期11-22,共12页
An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding ... An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov's stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response,and robustness against uncertainties. 展开更多
关键词 CHAOS rod-type plasma torch intelligent integral terminal sliding mode control Bee algorithm
在线阅读 下载PDF
Adaptive Neural Observer-Based Nonsingular Super-Twisting Terminal Sliding-Mode Controller Design for a Class of Hovercraft Nonlinear Systems 被引量:1
7
作者 Hamede Karami Reza Ghasemi 《Journal of Marine Science and Application》 CSCD 2021年第2期325-332,共8页
Designing a controller to stabilize maneuvering hovercrafts is an important challenge in amphibious vehicles.Hovercrafts are implemented in several applications,such as military missions,transportation,and scientific ... Designing a controller to stabilize maneuvering hovercrafts is an important challenge in amphibious vehicles.Hovercrafts are implemented in several applications,such as military missions,transportation,and scientific tasks.Thus.to improve their performance,it is crucial to control the system and compensate uncertainties and disruptions.In this paper,both classic and intelligent approaches are combined to design an observer-based controller.The system is assumed to be both controllable and observable.An adaptive neural network observer with guaranteed stability is derived for the nonlinear dynamics of a hovercraft,which is controlled via a nonsingular super-twisting terminal sliding-mode method.The main merits of the proposed method are as follows:(1) the Lyapunov stability of the overall closed-loop system,(2) the convergence of the tracking and observer errors to zero,(3) the robustness against uncertainties and disturbances,and(4) the reduction of the chattering phenomena.The simulation results validate the excellent performance of the derived method. 展开更多
关键词 HOVERCRAFT Neural network OBSERVER terminal sliding mode Nonlinear system NONSINGULAR Super twisting
在线阅读 下载PDF
Integrated guidance and control of guided projectile with multiple constraints based on fuzzy adaptive and dynamic surface 被引量:6
8
作者 Shang Jiang Fu-qing Tian +1 位作者 Shi-yan Sun Wei-ge Liang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1130-1141,共12页
Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic character... Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms. 展开更多
关键词 Integrated guidance and control Multiple constraints Fuzzy adaptive Dynamic surface Nonsingular terminal sliding mode Extended state observer
在线阅读 下载PDF
Finite-time tracking control and vibration suppression based on the concept of virtual control force for flexible two-link space robot 被引量:1
9
作者 Rong-Hua Lei Li Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期874-883,共10页
The dynamic modeling, finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot are studied. Firstly, the dynamic model of the system is established by combining Lagrange met... The dynamic modeling, finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot are studied. Firstly, the dynamic model of the system is established by combining Lagrange method with assumed mode method. In order to ensure that the base attitude and the joints of space robot can reach the desired positions within a limited time, a non-singular fast terminal sliding mode(NFTSM) controller is designed, which realizes the finite-time convergence of the trajectory tracking errors. Subsequently, for the sake of suppressing the vibrations of flexible links, a hybrid trajectory based on the concept of the virtual control force is developed, which can reflect the flexible modes and the trajectory tracking errors simultaneously. By modifying the original control scheme, a NFTSM hybrid controller is proposed. The hybrid control scheme can not only realized attitude stabilization and trajectory tracking of joints in finite time, but also provide a new method of vibration suppression. The simulation results verify the effectiveness of the designed hybrid control strategy. 展开更多
关键词 FINITE-TIME terminal sliding mode Flexible links Vibration suppression Virtual control force
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部