水稻需水量研究面临多方面挑战,包括海量数据处理、时空尺度变化的复杂性,这使得采用单一方法难以捕捉其关键特征。因此,为解决单一方法难以捕捉水稻需水量变化的关键特征的困难,该研究提出了一种时域和频域相结合的需水量关键影响因素...水稻需水量研究面临多方面挑战,包括海量数据处理、时空尺度变化的复杂性,这使得采用单一方法难以捕捉其关键特征。因此,为解决单一方法难以捕捉水稻需水量变化的关键特征的困难,该研究提出了一种时域和频域相结合的需水量关键影响因素识别方法。利用Penman-Monteith公式,基于7个气象指数、4个环流指数,研究了高邮灌区1980—2021年水稻生育期内作物需水量(crop water requirement,ET_(c))和灌溉需水量(irrigation water requirement,IR)特征,并从时频域角度,综合Pearson相关性、小波、投影长度和M-K检验等分析方法,结合能量分区,提出了水稻需水量关键影响因素的分析方法,识别水稻需水量关键影响因素及变化趋势。结果表明:1)ET_(c)和IR多年均值分别为532.88、285.04 mm/a;年际距平显示,ET_(c)和IR在2000年由偏少向偏多转变;月度变化显示,每年8月需水量最高,10月最低;2)ET_(c)和IR存在2个主能量区(Ⅰ、Ⅱ区),Ⅰ区相对Ⅱ区,时间尺度更大、周期更长;ET_(c)在Ⅰ、Ⅱ区分别受到相对湿度、日照时长主导,其中相对湿度领先ET_(c)约1/2周期,日照时长与ET_(c)无相位差;IR在Ⅰ、Ⅱ区均受降水量主导,二者相位差均为1/2周期;3)从能量分区及相关性的分析结果来看,ET_(c)的关键影响因素是日照时长和相对湿度,分别呈显著负相关和正相关;IR的关键影响因素是降水量,两者呈显著负相关。总体来看,ET_(c)和IR与关键影响因素呈现了一种“主震有序、余震不断”的特点;4)ET_(c)和IR呈现缓慢震荡上升趋势,在2005年后更为明显。研究提出的需水量关键影响因素识别方法,可为高邮灌区水稻及其他区域作物合理灌溉制度的制定提供参考。展开更多
A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two...A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.展开更多
文摘水稻需水量研究面临多方面挑战,包括海量数据处理、时空尺度变化的复杂性,这使得采用单一方法难以捕捉其关键特征。因此,为解决单一方法难以捕捉水稻需水量变化的关键特征的困难,该研究提出了一种时域和频域相结合的需水量关键影响因素识别方法。利用Penman-Monteith公式,基于7个气象指数、4个环流指数,研究了高邮灌区1980—2021年水稻生育期内作物需水量(crop water requirement,ET_(c))和灌溉需水量(irrigation water requirement,IR)特征,并从时频域角度,综合Pearson相关性、小波、投影长度和M-K检验等分析方法,结合能量分区,提出了水稻需水量关键影响因素的分析方法,识别水稻需水量关键影响因素及变化趋势。结果表明:1)ET_(c)和IR多年均值分别为532.88、285.04 mm/a;年际距平显示,ET_(c)和IR在2000年由偏少向偏多转变;月度变化显示,每年8月需水量最高,10月最低;2)ET_(c)和IR存在2个主能量区(Ⅰ、Ⅱ区),Ⅰ区相对Ⅱ区,时间尺度更大、周期更长;ET_(c)在Ⅰ、Ⅱ区分别受到相对湿度、日照时长主导,其中相对湿度领先ET_(c)约1/2周期,日照时长与ET_(c)无相位差;IR在Ⅰ、Ⅱ区均受降水量主导,二者相位差均为1/2周期;3)从能量分区及相关性的分析结果来看,ET_(c)的关键影响因素是日照时长和相对湿度,分别呈显著负相关和正相关;IR的关键影响因素是降水量,两者呈显著负相关。总体来看,ET_(c)和IR与关键影响因素呈现了一种“主震有序、余震不断”的特点;4)ET_(c)和IR呈现缓慢震荡上升趋势,在2005年后更为明显。研究提出的需水量关键影响因素识别方法,可为高邮灌区水稻及其他区域作物合理灌溉制度的制定提供参考。
文摘A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.