期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
Robust fuzzy control of Takagi-Sugeno fuzzy neural networks with discontinuous activation functions and time delays
1
作者 Yaonan Wang Xiru Wu Yi Zuo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期473-481,共9页
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor... The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results. 展开更多
关键词 delayed neural network global robust asymptotical stability discontinuous neuron activation linear matrix inequality(LMI) takagi-sugeno(t-s fuzzy model.
在线阅读 下载PDF
基于粗糙集高速公路混沌T-S FNN控制仿真 被引量:4
2
作者 庞明宝 贺国光 +1 位作者 赵新萍 东方 《系统仿真学报》 CAS CSCD 北大核心 2012年第2期370-376,共7页
研究基于粗糙集理论的高速公路混沌系统模糊神经网络入口匝道控制方法。针对高速公路车流量不确定性特点,提出了通过数据挖掘技术建立交通流入口匝道智能混沌控制器知识库的思想;设计了以密度、上游流量和最大李亚普诺夫指数作为输入,... 研究基于粗糙集理论的高速公路混沌系统模糊神经网络入口匝道控制方法。针对高速公路车流量不确定性特点,提出了通过数据挖掘技术建立交通流入口匝道智能混沌控制器知识库的思想;设计了以密度、上游流量和最大李亚普诺夫指数作为输入,红灯时间作为输出的T-S模糊神经网络混沌控制器;采用粗糙集理论建立混沌控制器知识库,确定模糊神经网络控制器结构并提取模糊规则;采用模糊神经网络方法对控制器参数进行优化。仿真结果表明:采用该方法设计的智能混沌控制器,可实现保持高速公路有序运动、避免交通堵塞、提高交通通行能力的目的,是提高高速公路管理控制水平的有效方法。 展开更多
关键词 高速公路 混沌控制 t-s模糊神经网络 粗糙集 模糊C-均值聚类 仿真
在线阅读 下载PDF
基于T-S模型的FNN降水粒子相态识别方法 被引量:2
3
作者 李海 邵海洲 +1 位作者 章涛 吴仁彪 《雷达科学与技术》 北大核心 2017年第6期607-616,共10页
提出一种基于T-S(Takagi-Sugeno)模型的模糊神经网络(Fuzzy Neural Network,FNN)降水粒子相态识别方法。该方法建立一种多层前馈的模糊神经网络,在对双线偏振气象雷达接收的偏振参量进行模糊化、规则计算、模糊推理和退模糊处理基础上,... 提出一种基于T-S(Takagi-Sugeno)模型的模糊神经网络(Fuzzy Neural Network,FNN)降水粒子相态识别方法。该方法建立一种多层前馈的模糊神经网络,在对双线偏振气象雷达接收的偏振参量进行模糊化、规则计算、模糊推理和退模糊处理基础上,利用模糊神经网络误差反馈的思想自适应的调节不同降水类型各偏振参量隶属函数的参数,保证降水粒子相态识别的精度要求。经过实测数据的处理结果证明了该方法的有效性。 展开更多
关键词 相态识别 t-s模型 模糊神经网络 双线偏振气象雷达 隶属函数
在线阅读 下载PDF
基于区间Ⅱ型FNN的MSWI过程炉膛温度控制 被引量:3
4
作者 汤健 田昊 +1 位作者 夏恒 乔俊飞 《北京工业大学学报》 北大核心 2025年第2期157-172,共16页
针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析... 针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析以确定对其产生影响的关键操作变量;然后,根据上述操作变量基于线性回归决策树(linear regression decision tree,LRDT)建立多入单出(multiple-input single-output,MISO)炉膛温度模型;最后,构建具有自适应参数学习的IT2FNN控制器,并证明其稳定性。在MSWI过程数据集上构建模型并进行控制,实验结果验证了所提方法的有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 炉膛温度控制 线性回归决策树(linear regression decision tree LRDT) 区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network IT2fnn) 梯度下降法 李雅普诺夫稳定性分析
在线阅读 下载PDF
基于T-S模糊神经网络的齿槽效应补偿方法研究 被引量:5
5
作者 靖永志 肖建 《传感技术学报》 CAS CSCD 北大核心 2013年第8期1121-1125,共5页
针对齿槽效应带来的齿槽误差问题,提出在传感器探头内布设齿槽位置检测线圈,建立传感器齿槽特性模型和基于T-S模糊神经网络的齿槽补偿系统模型,依据齿槽位置信号对传感器进行齿槽误差补偿。利用附加动量的BP学习方法对网络进行学习和测... 针对齿槽效应带来的齿槽误差问题,提出在传感器探头内布设齿槽位置检测线圈,建立传感器齿槽特性模型和基于T-S模糊神经网络的齿槽补偿系统模型,依据齿槽位置信号对传感器进行齿槽误差补偿。利用附加动量的BP学习方法对网络进行学习和测试。仿真结果表明补偿模型的输出不再随齿槽位置波动,最大误差为±0.2 mm,该种方法可以有效地消除齿槽效应并提高传感器的检测精度,满足高速磁浮车悬浮控制系统要求。 展开更多
关键词 间隙传感器 齿槽效应 t-s模型 模糊神经网络 高速磁浮列车
在线阅读 下载PDF
基于T-S模糊神经网络模型的编码器故障软闭环容错控制方法 被引量:3
6
作者 李炜 李青朋 +1 位作者 毛海杰 龚建兴 《计算机应用》 CSCD 北大核心 2014年第12期3646-3650,共5页
针对舞台吊杆调速系统中速度反馈元件增量式编码器可能产生的丢码、断码等问题,为防止故障影响的传播,结合数据驱动技术提出了一种基于T-S模糊神经网络(T-S FNN)模型的编码器故障检测与软闭环容错控制方法。首先,利用系统正常运行时的... 针对舞台吊杆调速系统中速度反馈元件增量式编码器可能产生的丢码、断码等问题,为防止故障影响的传播,结合数据驱动技术提出了一种基于T-S模糊神经网络(T-S FNN)模型的编码器故障检测与软闭环容错控制方法。首先,利用系统正常运行时的历史数据建立系统较为精确的T-S FNN预测模型,并用实际编码器测量值与模型预测值相减获得残差信息;其次,将其残差实时数据通过改进的序贯概率比检验(SPRT)算法进行故障检测,以克服检测延迟确保故障检测的可靠性,当检测出故障时,再用T-S FNN模型的预测输出替代故障编码器的输出,实现软闭环方式下的容错运行;最后,针对编码器丢码、断码等故障,采用上述方法进行了软闭环容错控制的有效性仿真验证。仿真结果表明,该方法能够快速可靠地检测到编码器故障,并用预测的重构信息通过容错切换机制,及时、安全地以软闭环方式实现了对故障编码器的容错控制,提高了舞台吊杆调速系统运行的安全可靠性。 展开更多
关键词 舞台吊杆调速系统 增量式编码器 t-s模糊神经网络 改进的序贯概率比检验算法 软闭环容错控制
在线阅读 下载PDF
一种改进T-S模糊神经网络及其在装备保障力量动态部署中的应用 被引量:3
7
作者 陈晓山 张勇明 毛超 《兵工自动化》 2019年第7期56-59,共4页
为提高模糊神经网络的全局搜索能力和学习效率,提出一种常规T-S 模糊神经网络(Takagi-Sugeno fuzzyneural network,T-S FNN)的改进方法。将遗传算法引入常规T-S FNN,采用其搜索功能来确定T-S FNN 的权值和参数,建立装备保障力量动态部... 为提高模糊神经网络的全局搜索能力和学习效率,提出一种常规T-S 模糊神经网络(Takagi-Sugeno fuzzyneural network,T-S FNN)的改进方法。将遗传算法引入常规T-S FNN,采用其搜索功能来确定T-S FNN 的权值和参数,建立装备保障力量动态部署模型,对装备保障力量部署问题进行说明,通过改进方法训练学习,获取动态部署方案,并对其进行比较与分析。结果表明:该方法提高了自适应性和学习效率,可为装备保障力量动态部署的快速辅助决策提供参考。 展开更多
关键词 t-s模型 模糊神经网络 遗传算法 装备保障
在线阅读 下载PDF
基于模糊神经网络(FNN)的赤潮预警预测研究 被引量:17
8
作者 王洪礼 葛根 李悦雷 《海洋通报》 CAS CSCD 北大核心 2006年第4期36-41,共6页
为研究各种理化因子与赤潮藻类浓度间的非线性对应规律和有效预测赤潮藻类浓度,构建了基于BP算法的一个四层模糊神经网络模型。将模糊神经网络(FNN)技术引入赤潮预测研究,并与普通BP网络、RBF网络的结果作比较,结果表明,该模型能够较好... 为研究各种理化因子与赤潮藻类浓度间的非线性对应规律和有效预测赤潮藻类浓度,构建了基于BP算法的一个四层模糊神经网络模型。将模糊神经网络(FNN)技术引入赤潮预测研究,并与普通BP网络、RBF网络的结果作比较,结果表明,该模型能够较好地反演出各种理化因子与夜光藻密度的非线性对应变化规律,有更好的预测功能。 展开更多
关键词 赤潮预测 模糊神经网络(fnn) BP算法
在线阅读 下载PDF
EFNN——一种增强型模糊神经网络 被引量:3
9
作者 陈保国 朱奕 +1 位作者 张华 张家余 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2001年第1期89-92,共4页
提出了一种较为广义的增强型模糊神经网络 ,以达到更高的非线性系统逼近能力 .该网络模糊规则的结论以函数形式给出 ,从而决定了网络的结构由两个子网络组成 ,即特征网络和功能网络 .网络采用梯度算法来修正网络的参数 .仿真表明 :该网... 提出了一种较为广义的增强型模糊神经网络 ,以达到更高的非线性系统逼近能力 .该网络模糊规则的结论以函数形式给出 ,从而决定了网络的结构由两个子网络组成 ,即特征网络和功能网络 .网络采用梯度算法来修正网络的参数 .仿真表明 :该网络具有较强的非线性逼近能力和较快的学习速度 . 展开更多
关键词 特征网络 功能网络 增强型模型神经网络 梯度算法
在线阅读 下载PDF
高斯激活函数特征值分解修剪技术的D-FNN算法研究 被引量:3
10
作者 何正风 张德丰 孙亚民 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期34-39,共6页
提出了一种D-FNN的新算法。其算法的最主要特点是:D-FNN选择高斯函数作为网络的激活函数和模糊系统的隶属函数,该算法不仅具有强大的全局映射泛化能力,而且在细化局部方面也有效;使用特征值分解修剪技术使得网络结构不会持续增长,可获... 提出了一种D-FNN的新算法。其算法的最主要特点是:D-FNN选择高斯函数作为网络的激活函数和模糊系统的隶属函数,该算法不仅具有强大的全局映射泛化能力,而且在细化局部方面也有效;使用特征值分解修剪技术使得网络结构不会持续增长,可获得更为紧凑的D-FNN结构,避免了过拟合现象。最后通过对Her-mite多项式逼近能力来验证所提方案的有效性。仿真结果表明使用特征值分解修剪技术和高斯激活函数的D-FNN具有良好的性能。 展开更多
关键词 动态模糊神经网络 模糊规则 修剪技术 特征值分解
在线阅读 下载PDF
基于QPSO-FNN的混沌时间序列预测 被引量:3
11
作者 潘玉民 邓永红 张全柱 《计算机应用与软件》 CSCD 北大核心 2013年第8期91-94,98,共5页
提出一种太阳黑子月均数混沌时序的模糊神经网络预测方法。该方法根据时间序列的延迟因子和饱和嵌入维数重构相空间,利用Lyapunov指数法判别时序系统的混沌特性,采用混合pi-sigma模糊神经推理方法拟合混沌吸引子特性。其中混合pi-sig-m... 提出一种太阳黑子月均数混沌时序的模糊神经网络预测方法。该方法根据时间序列的延迟因子和饱和嵌入维数重构相空间,利用Lyapunov指数法判别时序系统的混沌特性,采用混合pi-sigma模糊神经推理方法拟合混沌吸引子特性。其中混合pi-sig-ma模糊神经网络以高斯基函数作为模糊子集的隶属度函数,在线动态调整隶属度函数和结论参数,并采用量子粒子群算法(QPSO)优化网络初始参数,提高预测准确度。该模型具有物理意义清晰、预测精度高以及预测结果确定等优点,仿真实验结果证明了该方法的有效性。 展开更多
关键词 混沌时间序列 太阳黑子 混合pi-sigma 模糊神经网络 QPSO-fnn 预测
在线阅读 下载PDF
基于GD-FNN的金融股指预测模型 被引量:5
12
作者 孙彬 李铁克 张文学 《计算机应用研究》 CSCD 北大核心 2010年第9期3272-3275,3278,共5页
针对股票市场内部结构复杂性和外部因素多变性,构建一种基于椭圆基函数且能够动态调整网络结构的广义动态模糊神经网络模型对金融股指进行预测。以上证指数为例,在价格和成交量的基础上,将与股票市场密切相关的宏观经济指标引入模型预... 针对股票市场内部结构复杂性和外部因素多变性,构建一种基于椭圆基函数且能够动态调整网络结构的广义动态模糊神经网络模型对金融股指进行预测。以上证指数为例,在价格和成交量的基础上,将与股票市场密切相关的宏观经济指标引入模型预测指标体系。通过滑动时间窗对数据集进行处理,提高了模型预测准确性并降低了运算时间。与其他神经网络模型预测效果进行比较,结果表明提出的模型具有较好的预测效果。 展开更多
关键词 广义动态模糊神经网络 金融股指预测 预测指标体系 动态模糊规则抽取 滑动时间窗 金融非线性系统辨识
在线阅读 下载PDF
基于FNN解耦纸张定量水分控制策略的研究与应用 被引量:4
13
作者 胡亚南 马文明 王孟效 《中国造纸》 CAS 北大核心 2017年第7期48-53,共6页
针对纸张抄造过程中纸张定量与水分之间存在强耦合的问题,提出一种模糊神经网络(Fuzzy Neural Network,FNN)的解耦控制器,首先利用模糊控制对控制系统进行耦合补偿,然后利用神经网络的自学习、自调整能力不断在控制过程中优化模糊控制... 针对纸张抄造过程中纸张定量与水分之间存在强耦合的问题,提出一种模糊神经网络(Fuzzy Neural Network,FNN)的解耦控制器,首先利用模糊控制对控制系统进行耦合补偿,然后利用神经网络的自学习、自调整能力不断在控制过程中优化模糊控制规则及解耦补偿参数,成功地将纸张抄造过程的多变量系统转变为单变量系统,实现纸张定量、水分之间的解耦。仿真结果表明,采用FNN解耦控制器具有较好的动态响应和较强的鲁棒性。将该策略应用于国内某造纸厂的纸板机控制系统,纸张定量控制精度为±3.9 g/m^2左右,水分控制精度为±1.0%左右,满足该纸机定量水分高精度控制要求。 展开更多
关键词 定量 水分 模糊控制 神经网络 fnn
在线阅读 下载PDF
基于规则产生准则与修剪策略的D-FNN算法研究 被引量:2
14
作者 左军 周灵 李晓东 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期43-48,共6页
提出了一种D-FNN结构及其学习算法,该D-FNN的结构基于径向基神经网络。模糊规则的产生由输出误差或可容纳边界的有效半径决定。修剪技术的应用,使得网络结构能够保持紧凑,学习速度快,确保系统的泛化能力。对所提算法作了详细探讨,并与... 提出了一种D-FNN结构及其学习算法,该D-FNN的结构基于径向基神经网络。模糊规则的产生由输出误差或可容纳边界的有效半径决定。修剪技术的应用,使得网络结构能够保持紧凑,学习速度快,确保系统的泛化能力。对所提算法作了详细探讨,并与相关算法作比较,从而发现了D-FNN的独特思想。编写了D-FNN的仿真程序,对具体案例进行了仿真。结果表明,D-FNN具有紧凑的结构和优秀的性能。 展开更多
关键词 动态模糊神经网络 径向基函数 模糊规则 修剪策略
在线阅读 下载PDF
基于FNN的覆冰机器人越障机械臂轨迹跟踪控制 被引量:2
15
作者 郝晓弘 刘晓鹏 +1 位作者 岳和平 张帆 《计算机工程与应用》 CSCD 北大核心 2010年第8期232-233,237,共3页
覆冰机器人除冰时要跨越各种障碍物。采用卡尔曼滤波学习算法,将自适应模糊神经网络控制器用于覆冰机器人越障时的机械臂轨迹跟踪控制,解决了BP算法实时性差的问题。经过仿真实验论证,该方法对覆冰机器人越障时的机械臂轨迹跟踪控制具... 覆冰机器人除冰时要跨越各种障碍物。采用卡尔曼滤波学习算法,将自适应模糊神经网络控制器用于覆冰机器人越障时的机械臂轨迹跟踪控制,解决了BP算法实时性差的问题。经过仿真实验论证,该方法对覆冰机器人越障时的机械臂轨迹跟踪控制具有很好的效果,表明控制策略和理论分析的可行性。 展开更多
关键词 输电线路 覆冰机器人 模糊神经网络 自适应性
在线阅读 下载PDF
基于FTA和FNN的液压系统故障诊断方法研究 被引量:3
16
作者 游张平 叶晓平 +1 位作者 朱银法 胡笑奇 《机械科学与技术》 CSCD 北大核心 2013年第12期1855-1858,共4页
针对液压系统故障的复杂性和不确定性等特点,传统的故障推理方法难以满足液压系统故障诊断的要求,提出了基于故障树分析和专家经验知识的模糊神经网络故障诊断方法。以起重设备液压系统为研究对象,建立故障树模型,基于故障树信息和专家... 针对液压系统故障的复杂性和不确定性等特点,传统的故障推理方法难以满足液压系统故障诊断的要求,提出了基于故障树分析和专家经验知识的模糊神经网络故障诊断方法。以起重设备液压系统为研究对象,建立故障树模型,基于故障树信息和专家经验知识,建立模糊神经网络诊断模型及并提取训练数据,在此基础上,运用统计参数法确定模糊预处理所需的模糊隶属函数。将训练好的网络模型应用于实例诊断,实验结果验证了该方法的实用性和有效性。 展开更多
关键词 液压系统 故障诊断 故障树分析 神经网络
在线阅读 下载PDF
基于D-FNN的开关磁阻无位置传感器的研究 被引量:2
17
作者 吴江潦 易灵芝 +1 位作者 邓文浪 刘香 《传感器与微系统》 CSCD 北大核心 2011年第1期66-69,89,共5页
提出了一种基于扩展径向基函数(RBF)神经网络的动态模糊神经网络(D-FNN)的开关磁阻电机无位置传感器控制的新方法。动态模糊神经网络系统以在线采样的相绕组的电流和磁链为输入,以转子位置角度为输出,从而建立起电流和磁链、转子位置角... 提出了一种基于扩展径向基函数(RBF)神经网络的动态模糊神经网络(D-FNN)的开关磁阻电机无位置传感器控制的新方法。动态模糊神经网络系统以在线采样的相绕组的电流和磁链为输入,以转子位置角度为输出,从而建立起电流和磁链、转子位置角度的非线性映射关系;训练完成后,用D-FNN输出结果取代位置传感器角度信号,实现电机无位置传感器运行。仿真和实验结果表明:由D-FNN获得的角度信号和由位置传感器获得的角度信号相比误差小,电机能够准确换相,且输出转矩波动小,转速曲线平滑,电机在无位置传感器下运行良好。 展开更多
关键词 开关磁阻电机 动态模糊神经网络 无位置传感器 转子位置检测
在线阅读 下载PDF
FNN上的反向传播学习算法 被引量:2
18
作者 毛国君 宋广军 杨名生 《计算机应用与软件》 CSCD 1998年第4期34-38,共5页
近几年来,模糊神经网络(FNN)的研究引起了广泛的注意。本文对FNN上的反向传播学习方法加以讨论。使用输入均值和输出权重参量来进行模糊化和反模糊化处理,学习的目的是调整这两个参量到合适的值。
关键词 模糊神经网络 反向传播学习 算法
在线阅读 下载PDF
基于改进FNN的危险化学品运输事故智能预测 被引量:2
19
作者 匡蕾 王斌 《中国安全科学学报》 CAS CSCD 北大核心 2012年第9期97-102,共6页
为提高危险化学品运输事故预测水平,提出一种改进的模糊神经网络(FNN)模型。实现对危险化学品运输事故起数的智能预测。首先分析危险化学品运输的危险源因素集,确定危险源因素集包含实值型和经验型2类数据。然后设计一种数据融合模型,... 为提高危险化学品运输事故预测水平,提出一种改进的模糊神经网络(FNN)模型。实现对危险化学品运输事故起数的智能预测。首先分析危险化学品运输的危险源因素集,确定危险源因素集包含实值型和经验型2类数据。然后设计一种数据融合模型,该模型通过模糊综合评价来精简FNN结构,在此基础上给出改进的危险化学品运输事故的智能预测算法。最后给出改进的危险化学品运输事故的智能预测算法,并以我国2005—2010年期间每个月发生的危险化学品运输事故起数为数据基础进行计算。结果表明,改进模型的预测精度和各种误差均明显好于普通预测模型,预测结果能够反映危险化学品运输事故的实际情况。 展开更多
关键词 危险化学品 运输事故 智能预测 数据融合 模糊神经网络(fnn)
在线阅读 下载PDF
基于FNN的电动汽车自适应横向稳定性控制 被引量:8
20
作者 袁小芳 陈秋伊 +1 位作者 黄国明 史可 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第8期98-104,共7页
针对分布式驱动电动汽车(Distributed drive electric vehicles,DDEV)在急转弯时出现的不足转向和侧向失稳等不确定性稳定问题,提出了一种基于模糊神经网络(Fuzzy Neural Network,FNN)的自适应横向稳定性控制系统.该系统包括上级直接横... 针对分布式驱动电动汽车(Distributed drive electric vehicles,DDEV)在急转弯时出现的不足转向和侧向失稳等不确定性稳定问题,提出了一种基于模糊神经网络(Fuzzy Neural Network,FNN)的自适应横向稳定性控制系统.该系统包括上级直接横摆力矩控制器和下级转矩分配控制器.其中,上级直接横摆力矩控制器根据不确定因素产生的质心侧偏角误差得到期望的直接横摆力矩;下级转矩分配控制器将上级控制器输出的直接横摆力矩按轮胎载荷分配至每个轮毂电机,实现高效调整汽车姿态,提高汽车的转向能力和侧向稳定性.仿真实验表明,所提出的控制系统显著提升了DDEV的侧向稳定性,表现出较传统模糊控制更好的控制效果. 展开更多
关键词 DDEV 横向稳定性 不确定性 横摆力矩 模糊神经网络
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部