期刊文献+
共找到446篇文章
< 1 2 23 >
每页显示 20 50 100
Blind recognition of k/n rate convolutional encoders from noisy observation 被引量:14
1
作者 Li Huang Wengu Chen +1 位作者 Enhong Chen Hong Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期235-243,共9页
Blind recognition of convolutional codes is not only essential for cognitive radio, but also for non-cooperative context. This paper is dedicated to the blind identification of rate k/n convolutional encoders in a noi... Blind recognition of convolutional codes is not only essential for cognitive radio, but also for non-cooperative context. This paper is dedicated to the blind identification of rate k/n convolutional encoders in a noisy context based on Walsh-Hadamard transformation and block matrix (WHT-BM). The proposed algorithm constructs a system of noisy linear equations and utilizes all its coefficients to recover parity check matrix. It is able to make use of fault-tolerant feature of WHT, thus providing more accurate results and achieving better error performance in high raw bit error rate (BER) regions. Moreover, it is more computationally efficient with the use of the block matrix (BM) method. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Cognitive radio convolutION convolutional codes Error correction Hadamard matrices Hadamard transforms Linear transformations Mathematical transformations Matrix algebra Signal encoding
在线阅读 下载PDF
Blind reconstruction of convolutional code based on segmented Walsh-Hadamard transform 被引量:12
2
作者 Fenghua Wang Hui Xie Zhitao Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期748-754,共7页
Walsh-Hadamard transform (WriT) can solve linear error equations on Field F2, and the method can be used to recover the parameters of convolutional code. However, solving the equations with many unknowns needs enorm... Walsh-Hadamard transform (WriT) can solve linear error equations on Field F2, and the method can be used to recover the parameters of convolutional code. However, solving the equations with many unknowns needs enormous computer memory which limits the application of WriT. In order to solve this problem, a method based on segmented WriT is proposed in this paper. The coefficient vector of high dimension is reshaped and two vectors of lower dimension are obtained. Then the WriT is operated and the requirement for computer memory is much reduced. The code rate and the constraint length of convolutional code are detected from the Walsh spectrum. And the check vector is recovered from the peak position. The validity of the method is verified by the simulation result, and the performance is proved to be optimal. 展开更多
关键词 convolutional code blind reconstruction Walsh-Hadamard transform (WriT) tinear error equation.
在线阅读 下载PDF
Convolutional Sparse Coding in Gradient Domain for MRI Reconstruction 被引量:1
3
作者 Jiaojiao Xiong Hongyang Lu +1 位作者 Minghui Zhang Qiegen Liu 《自动化学报》 EI CSCD 北大核心 2017年第10期1841-1849,共9页
关键词 梯度图像 稀疏编码 MRI 卷积 应用 分割图像 空间采样 磁共振成像
在线阅读 下载PDF
面向VVC的QP自适应环路滤波器
4
作者 刘鹏宇 金鹏程 《北京工业大学学报》 北大核心 2025年第10期1171-1178,共8页
现有的基于卷积神经网络(convolutional neural network,CNN)的环路滤波器倾向于将多个网络应用于不同的量化参数(quantization parameter,QP),消耗训练模型中的大量资源,并增加内存负担。针对这一问题,提出一种基于CNN的QP自适应环路... 现有的基于卷积神经网络(convolutional neural network,CNN)的环路滤波器倾向于将多个网络应用于不同的量化参数(quantization parameter,QP),消耗训练模型中的大量资源,并增加内存负担。针对这一问题,提出一种基于CNN的QP自适应环路滤波器。首先,设计一个轻量级分类网络,按照滤波难易程度将编码树单元(coding tree unit,CTU)划分为难、中、易3类;然后,构建3个融合了特征信息增强融合模块的基于CNN的滤波网络,以满足不同QP下的3类CTU滤波需求。将所提出的环路滤波器集成到多功能视频编码(versatile video coding,VVC)标准H.266/VVC的测试软件VTM 6.0中,替换原有的去块效应滤波器(deblocking filter,DBF)、样本自适应偏移(sample adaptive offset,SAO)滤波器和自适应环路滤波器。实验结果表明,该方法平均降低了3.14%的比特率差值(Bjøntegaard delta bit rate,BD-BR),与其他基于CNN的环路滤波器相比,显著提高了压缩效率,并减少了压缩伪影。 展开更多
关键词 视频编码 多功能视频编码(versatile video coding VVC)标准 环路滤波 卷积神经网络(convolutional neural network CNN) 深度学习 图像去噪
在线阅读 下载PDF
面向高分辨率图像传输的CNN网络编码方案研究
5
作者 刘娜 杨颜博 +2 位作者 张嘉伟 李宝山 马建峰 《西安电子科技大学学报》 北大核心 2025年第2期225-238,共14页
网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码... 网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码方案对高维度空间信息的捕捉能力不足,带来较大的通信及计算开销。为此,文中提出采用二维卷积神经网络(CNN)对各网络节点的编解码器进行参数化设计的联合源的深度学习网络编码方案,通过CNN捕捉深层空间结构信息并降低网络节点的计算复杂度。在信源节点,通过卷积层运算实现对传输数据的降维处理,提升数据的传输速率;在中间节点,接收来自两个信源的数据并通过CNN编码压缩至单个信道传输;在信宿节点,对接收到的数据利用CNN进行升维解码而恢复出原始图像。实验表明,在不同信道带宽占用比和信道噪声水平下,该方案在峰值信噪比和结构相似度上展现出优良的解码性能。 展开更多
关键词 网络编码 深度学习 卷积神经网络 高分辨率图像 图像通信
在线阅读 下载PDF
DeepCom-GCN:融入控制流结构信息的代码注释生成模型
6
作者 钟茂生 刘会珠 +1 位作者 匡江玲 严婷 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期27-36,共10页
代码注释生成是指给定一个代码片段,通过模型自动生成一段关于代码片段功能的概括性自然语言描述.不同于自然语言,程序语言具有复杂语法和强结构性.部分研究工作只利用了源代码的序列信息或抽象语法树信息,未能充分利用源代码的逻辑结... 代码注释生成是指给定一个代码片段,通过模型自动生成一段关于代码片段功能的概括性自然语言描述.不同于自然语言,程序语言具有复杂语法和强结构性.部分研究工作只利用了源代码的序列信息或抽象语法树信息,未能充分利用源代码的逻辑结构信息.针对这一问题,该文提出一种融入程序控制流结构信息的代码注释生成方法,将源代码序列和结构信息作为单独的输入进行处理,允许模型学习代码的语义和结构.在2个公开数据集上进行验证,实验结果表明:和其他基线方法相比,DeepCom-GCN在BLEU-4、METEOR和ROUGE-L指标上的性能分别提升了2.79%、1.67%和1.21%,验证了该方法的有效性. 展开更多
关键词 代码注释生成 抽象语法树 控制流图 图卷积神经网络 软件工程 程序理解 自然语言处理
在线阅读 下载PDF
基于印刷量子点的可靠性复合光谱图像编解码算法研究 被引量:3
7
作者 赵文康 曹鹏 《包装工程》 北大核心 2025年第7期173-182,共10页
目的为提高印刷量子点图像的鲁棒性、识读速度和信息隐藏容量,提出一种可靠性复合光谱印刷量子点图像编解码算法。方法首先结合ChaCha20加密算法、SHA-256哈希算法、(331,225,367)卷积码和交织编码,将明文信息编码成具有安全验证和纠错... 目的为提高印刷量子点图像的鲁棒性、识读速度和信息隐藏容量,提出一种可靠性复合光谱印刷量子点图像编解码算法。方法首先结合ChaCha20加密算法、SHA-256哈希算法、(331,225,367)卷积码和交织编码,将明文信息编码成具有安全验证和纠错能力的二进制秘密信息,再插入伪随机同步信息,并进行掩膜矩阵置乱,映射成可通过相邻数据联合解算的印刷量子点图像,最后利用2组印刷量子点图像对载体图像进行信息调制,实现复合光谱大容量信息隐藏。结果实验结果显示,生成的复合光谱印刷量子点图像可抵抗20%以内的噪声攻击,识读时间在0.1 s左右,嵌入率为2 bpp,与原始载体图像的峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)约为40 dB,结构相似性(Structural Similarity,SSIM)约为0.97。结论本算法与其他算法相比,在高嵌入率下具有更高的鲁棒性和更好的不可见性,识读速度更快。 展开更多
关键词 印刷量子点图像 复合光谱 卷积码 信息隐藏
在线阅读 下载PDF
基于低秩与卷积稀疏约束的压缩感知光谱成像重构方法 被引量:1
8
作者 郭高 王攀 +2 位作者 李杰 席特立 邵晓鹏 《光子学报》 北大核心 2025年第6期172-187,共16页
针对压缩感知光谱成像快速重建需求,提出了一种基于低秩与卷积稀疏约束的压缩感知光谱成像重建方法,首先将压缩感知光谱采集系统的重构任务,在卷积稀疏编码的框架下分解成为两部分的重构结果叠加,即低频的平滑主体结构部分和高频的纹理... 针对压缩感知光谱成像快速重建需求,提出了一种基于低秩与卷积稀疏约束的压缩感知光谱成像重建方法,首先将压缩感知光谱采集系统的重构任务,在卷积稀疏编码的框架下分解成为两部分的重构结果叠加,即低频的平滑主体结构部分和高频的纹理细节部分。针对高频的纹理细节部分的重构,提出基于卷积稀疏编码框架,对卷积字典对应的稀疏特征图进行ℓ_(2,1)范数约束,保证了对光谱数据中光谱维度的先验约束,从而提高重构数据中光谱维度的准确度。针对低频的平滑主体部分重构,提出使用全局的卷积稀疏编码,由于使用了针对低频部分所训练的卷积字典,因此使用核范数对卷积特征图进行约束。通过整合两部分的重建约束,实现了对压缩感知光谱成像系统的分步重构。通过仿真实验验证了所提方法的重构结果,在空间与光谱维度相较于主流前沿的重建方法均取得了更高的重构精度,其中空间维度上峰值信噪比至少可提升2 dB以上。 展开更多
关键词 压缩感知 光谱成像 卷积稀疏编码 火箭尾焰光谱 最优化求解
在线阅读 下载PDF
一种基于混合量子卷积神经网络的恶意代码检测方法 被引量:1
9
作者 熊其冰 苗启广 +2 位作者 杨天 袁本政 费洋扬 《计算机科学》 北大核心 2025年第3期385-390,共6页
量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测... 量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测模型越来越复杂,参数量越来越大,迫切需要一种高效轻量型的检测模型。为此,设计了一种混合量子卷积神经网络模型,将量子计算融入经典卷积神经网络,以提高模型的计算效率。该模型包含量子卷积层、池化层和经典全连接层。量子卷积层采用低深度强纠缠轻量型的参数化量子线路实现,仅使用两类量子门:量子旋转门Ry和受控非门CNOT(controlled-NOT),并仅使用两量子比特实现卷积计算。池化层基于经典计算和量子计算实现了3种池化方法。在Google TensorFlow Quantum上进行了模拟实验。实验结果显示,所提模型在恶意代码公开数据集DataCon2020和Ember的分类性能(accuracy,F1-score)分别达到了(97.75%,97.71%)和(94.65%,94.78%),均有明显提升。 展开更多
关键词 量子计算 量子机器学习 混合量子卷积神经网络 恶意代码检测
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
10
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度图 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于CNN和自注意力神经网络的代码补全方法
11
作者 陈伟 何成万 +2 位作者 余秋惠 贺正源 罗蝶 《计算机工程与设计》 北大核心 2025年第10期2919-2926,共8页
由于基于抽象语法树的代码补全模型在提取代码序列细粒度的局部特征方面能力较差,并且难以应用于实际开发场景,提出一种基于卷积神经网络(convolutional neural network,CNN)和自注意力神经网络Transformer的代码补全方法。采用基于代... 由于基于抽象语法树的代码补全模型在提取代码序列细粒度的局部特征方面能力较差,并且难以应用于实际开发场景,提出一种基于卷积神经网络(convolutional neural network,CNN)和自注意力神经网络Transformer的代码补全方法。采用基于代码轻量级语法信息的预处理方法,并提出将CNN与Transformer网络以参数有效的方式结合,对代码序列的全局和局部依赖关系进行全面性建模。模型采用多任务学习机制(multi-task learning,MTL)共享代码token值和类型信息,提取代码序列中的语法和语义特征完成代码token级补全任务。实验结果表明,所提出的代码补全方法在ETH 150K Python数据集上准确率达到74.85%,显著优于基线方法。 展开更多
关键词 代码补全 多任务学习 Transformer 卷积神经网络 抽象语法树 轻量级语法 深度学习
在线阅读 下载PDF
面向高可靠低时延通信的信道编码技术研究综述
12
作者 蔡穗华 王义文 +1 位作者 白宝明 马啸 《电子学报》 北大核心 2025年第2期629-644,共16页
高可靠低时延通信技术是目前无线通信领域的热点问题之一,其关键在于高性能的中短码长信道编码技术的实现.与以往长码设计不同的是,在有限码长下,编码速率受误码率性能制约,因而需要针对性地进行编码构造、译码算法设计以及编码性能分... 高可靠低时延通信技术是目前无线通信领域的热点问题之一,其关键在于高性能的中短码长信道编码技术的实现.与以往长码设计不同的是,在有限码长下,编码速率受误码率性能制约,因而需要针对性地进行编码构造、译码算法设计以及编码性能分析与优化.目前已有面向中短码长的极化码、咬尾卷积码等编码技术的研究,但主要都是面向特定码长码率的优化设计,难以满足实际应用对灵活编码参数的要求.基于此,本文对中短码长编码技术进行全面归纳梳理与深度探讨分析,首先综述了现有有限码长编码性能界的理论分析方法,随后对近年来提出的编码技术进行了梳理,并分析比较每种编码技术的优缺点,最后详细探讨了针对低时延高可靠场景的新型编码技术,并对未来研究方向与发展趋势进行探讨和展望. 展开更多
关键词 信道编码 高可靠低时延通信 列表译码 有限码长容量 极化码 咬尾卷积码 双向叠加编码传输
在线阅读 下载PDF
采用轻量级卷积神经网络的H.266/通用视频编码跨分量预测
13
作者 邹承益 万帅 +1 位作者 朱志伟 尹宇杰 《西安交通大学学报》 北大核心 2025年第2期180-188,共9页
为提高新一代通用视频编码标准(H.266/VVC)中色度帧内预测的准确度,提出了采用轻量级卷积神经网络的跨分量预测方法。设计了亮度模块和边界模块,从亮度和色度参考样本中提取特征。设计了注意力模块,构建当前亮度参考样本和边界亮度参考... 为提高新一代通用视频编码标准(H.266/VVC)中色度帧内预测的准确度,提出了采用轻量级卷积神经网络的跨分量预测方法。设计了亮度模块和边界模块,从亮度和色度参考样本中提取特征。设计了注意力模块,构建当前亮度参考样本和边界亮度参考样本之间的空间关系,并应用于边界色度参考样本生成色度预测样本。为降低编解码复杂度,设计网络在二维完成特征融合和预测,优化了现有的同组参数处理不同块大小的训练策略。并且,引入宽度可变卷积,根据不同的块大小调整网络参数。实验结果表明:与H.266/VVC测试模型VTM18.0相比,所提网络在Y(亮度分量)、Cb(蓝色色度分量)、Cr(红色色度分量)上分别实现了0.30%、2.46%、2.25%的码率节省。与其他基于卷积神经网络的跨分量预测方法相比,有效地降低了网络参数和推理复杂度,分别节省了约10%的编码时间和19%的解码时间。 展开更多
关键词 通用视频编码 跨分量预测 轻量级卷积神经网络 注意力机制 宽度可变卷积
在线阅读 下载PDF
面向恶意代码检测的深度注意力网络架构
14
作者 李思聪 王飞 +1 位作者 魏子令 陈曙晖 《信息网络安全》 北大核心 2025年第8期1208-1222,共15页
针对恶意代码变种激增导致传统检测方法效能不足的问题,文章提出一种基于混合多尺度注意力网络的恶意代码分类架构MSA-ResNet。该架构通过双线性插值算法实现图像尺寸标准化,有效保留易混淆恶意代码家族的纹理特征,并结合动态数据增强... 针对恶意代码变种激增导致传统检测方法效能不足的问题,文章提出一种基于混合多尺度注意力网络的恶意代码分类架构MSA-ResNet。该架构通过双线性插值算法实现图像尺寸标准化,有效保留易混淆恶意代码家族的纹理特征,并结合动态数据增强策略优化输入多样性。在网络架构中,将多尺度注意力模块嵌入ResNet50残差块末端,构建跨尺度特征交互机制,使特征点关联距离缩短,注意力收敛速度提升。实验结果表明,架构在Malimg数据集上实现99.47%的准确率与99.46%的宏平均F1分数,较传统ResNet50架构提升1.95%,参数量仅增加15%。与现有最优方法相比,分类精度提升0.49%,且对Obfuscator.AD等复杂恶意代码变种检测有效。 展开更多
关键词 恶意代码可视化 卷积神经网络 多尺度注意力机制 图像尺寸归一化算法 特征融合
在线阅读 下载PDF
基于SecureViT的恶意代码检测模型
15
作者 张傲 刘微 +2 位作者 刘阳 李波 刘芳菲 《电子测量技术》 北大核心 2025年第16期113-121,共9页
随着恶意代码的多样性和隐蔽性不断增加,传统的恶意代码检测方法在面对未知恶意代码时往往面临高成本和不稳定性的挑战。本研究旨在提出一种轻量化且高效的恶意代码检测模型,以适应资源受限环境中的应用需求。本文提出了一种基于Secure... 随着恶意代码的多样性和隐蔽性不断增加,传统的恶意代码检测方法在面对未知恶意代码时往往面临高成本和不稳定性的挑战。本研究旨在提出一种轻量化且高效的恶意代码检测模型,以适应资源受限环境中的应用需求。本文提出了一种基于SecureViT的轻量化恶意代码检测模型。该模型通过引入ACF模块与MSDC模块实现高效特征提取与精准分类。ACF模块增强了模型对全局上下文信息的建模能力,MSDC模块则通过多尺度特征提取与动态显著性调整进一步提升特征表达的丰富性。实验结果表明,SecureViT模型在Malimg、Virus-MNIST和BIG2015数据集上的分类精度分别为97.46%、91.17%和95.49%,且计算开销仅为1.71 GMAC,显著提高了检测性能并有效降低了计算成本。该模型在恶意代码检测中展现了优异的检测精度与低计算复杂度,具备在资源受限环境中的实际应用潜力。 展开更多
关键词 恶意代码检测 上下文融合 多尺度卷积 轻量化深度学习模型
在线阅读 下载PDF
一种通过增强图像编码和非对称卷积网络的心音分类算法
16
作者 王晟懿 杨宏波 +1 位作者 潘家华 王威廉 《计算机科学》 北大核心 2025年第S1期118-125,共8页
文中提出了一种通过增强图像编码和非对称卷积网络的心音分类算法。与传统的基于统计特征和时频域特征提取心音的方法不同,该算法通过引入分数阶傅里叶变换(FrFT)分别对格拉姆角场(GAF)、马尔可夫场(MTF)、递归图(RP)3种图像编码方法进... 文中提出了一种通过增强图像编码和非对称卷积网络的心音分类算法。与传统的基于统计特征和时频域特征提取心音的方法不同,该算法通过引入分数阶傅里叶变换(FrFT)分别对格拉姆角场(GAF)、马尔可夫场(MTF)、递归图(RP)3种图像编码方法进行增强,构成FrFT-GAF,FrFT-MTF,FrFT-RP图像编码模块。运用上述图像编码模块将一维心音信号转换为二维编码特征图,并利用计算机视觉技术在分类任务中的优势,采用非对称卷积网络(ACNet)对心音的二维编码特征图进行分析处理,从而实现对心音的有效分类。此外,还分别对上述图像编码模块的性能进行了评估和比较。实验结果表明,在心音二分类任务中,FrFT-RP模块的分类效果最好,在数据集1和数据集2(Physio Net/CinC 2016数据集)上的准确率分别为0.981和0.977,F1分别为0.989和0.974。FrFT-MTF和FrFT-GAF模块的效果次之。使用FrFT增强图像编码特征后较以往方法有明显提升,为心音信号分类提供了新的思路和方法,有望应用于先心病机器辅助诊断。 展开更多
关键词 先天性心脏病 心音 图像编码 分数阶傅里叶变换 非对称卷积网络
在线阅读 下载PDF
基于余弦校验关系的卷积神经网络LDPC码盲识别
17
作者 陈文洁 张浦 +2 位作者 史高翔 刘林 刘烜 《系统工程与电子技术》 北大核心 2025年第9期3117-3125,共9页
针对低信噪比环境下低密度奇偶校验(low density parity check,LDPC)码的识别率低的问题,提出了一种基于余弦校验关系分布的卷积神经网络(convolutional neural network,CNN)算法。该算法基于码字与正确和错误校验矩阵的余弦校验关系统... 针对低信噪比环境下低密度奇偶校验(low density parity check,LDPC)码的识别率低的问题,提出了一种基于余弦校验关系分布的卷积神经网络(convolutional neural network,CNN)算法。该算法基于码字与正确和错误校验矩阵的余弦校验关系统计分布间的差异性,利用LDPC码与候选集校验矩阵计算得到的余弦校验关系的统计特性作为CNN的输入,利用CNN的深层信息挖掘能力,设计一种结构简单的四层CNN模型,实现LDPC码的有效识别。仿真结果表明,仅使用一个码字的条件下,在信噪比为3.25 dB时,对码率1/2、2/3B、3/4A、3/4B、5/6,码长2 304的LDPC码的正确识别率达到90%以上,与传统算法相比,性能提升了0.25~1.25 dB。 展开更多
关键词 低密度奇偶校验码 闭集识别 余弦校验关系 卷积神经网络
在线阅读 下载PDF
基于GADF与SAM-LCNN机制的石化离心风机轴承故障诊断方法
18
作者 刘森 刘美 +2 位作者 韩惠子 崔坤 陈曦 《机电工程》 北大核心 2025年第1期72-81,共10页
针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差... 针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差场将轴承一维振动信号编码为二维图像;然后,构建了融合空间注意力机制的轻量化卷积神经网络;最后,将GADF转换所得二维图像作为融合空间注意力机制的轻量化卷积神经网络的输入,进行了特征提取与故障诊断,分别采用了广东石油化工学院的石化多级离心风机轴承故障数据集与凯斯西储大学轴承故障数据集,对该方法的有效性及优越性进行了验证。研究结果表明:两种数据集的测试集分类准确率分别为99.7%和98.5%;相较于卷积神经网络(CNN)、LeNet-5和MobileNetV2三种对比方法,该离心风机滚动轴承诊断方法具有诊断精度高、诊断速度快和泛化能力强等优点。该方法能够有效地对石化离心风机轴承故障振动信号进行分类,可为石化安全生产提供保障,同时也为其他机械设备故障诊断提供参考。 展开更多
关键词 离心风机 滚动轴承 图像编码 格拉姆角场 轻量化卷积神经网络 空间注意力机制
在线阅读 下载PDF
OFDMA中同频干扰的Coded-IRC抑制算法 被引量:2
19
作者 李余 张祖凡 景小荣 《信号处理》 CSCD 北大核心 2013年第10期1346-1353,共8页
正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)的同频干扰问题一直是蜂窝移动通信系统的研究重点。本文从信号域时延出发,通过分析推导了系统中干扰的表达式,并验证了不同相对时延方差下同频干扰(Co-Channel Inte... 正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)的同频干扰问题一直是蜂窝移动通信系统的研究重点。本文从信号域时延出发,通过分析推导了系统中干扰的表达式,并验证了不同相对时延方差下同频干扰(Co-Channel Interference,CCI)对系统的影响。针对干扰的异步非相关性以及传统干扰抑制合并(Interference Rejection Combining,IRC)算法的局限性,利用卷积码时延小、高编码增益的特点,采用Coded-IRC方法抑制干扰。仿真结果表明,时延导致的CCI在很大程度上降低了系统的误比特率性能,而Coded-IRC算法克服了IRC的局限,使得系统误比特率性能得到提升。 展开更多
关键词 正交频分多址 同频干扰 干扰抑制合并 卷积码
在线阅读 下载PDF
Performance analysis and design of MIMO-OFDM system using concatenated forward error correction codes 被引量:3
20
作者 Arun Agarwal Saurabh N.Mehta 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1322-1343,共22页
This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shif... This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying(BPSK), quadrature phase shift keying(QPSK), quadrature amplitude modulation(QAM)-16 and QAM-64 with four error correction codes(convolutional code(CC), Reed-Solomon code(RSC)+CC, low density parity check(LDPC)+CC, Turbo+CC) is studied under three channel models(additive white Guassian noise(AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate(BER) and the peak signal to noise ratio(PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance. 展开更多
关键词 bit ERROR rate (BER) convolutional code (CC) forward ERROR correction peak signal to noise ratio (PSNR) Turbo code
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部