Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead t...Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead to energy loss.This study employs the classical trajectory Monte Carlo method to study the SI and SC processes of H_(2)O molecules using He^(2+) and C^(6+) projectiles in the energy range of 10 keV/u to 10 MeV/u.The total cross sections,single differential cross sections,impact parameter dependence of SI and SC,and fragmentation cross sections were investigated.Results illustrate that the cross section for SI is the highest when the projectile energy is close to the Bragg peak energy.When the projectile energy is below the Bragg peak energy,the ionized electrons in the forward direction dominate,and the removal of electrons can be associated with large impact parameters.As the projectile energy increases,the emission angle of the electrons gradually transitions from small angles(60°~120°)to large angles(60°~120°),and the removal of electrons is associated with small impact parameters.The energy distributions of the ionized electron are similar when the projectile energy is equal to,below or above the Bragg peak energy.The fragmentation cross sections after SI and SC in the energy range around the Bragg peak were also estimated.展开更多
Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al re...Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.展开更多
We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sectio...We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering,perpendicular and azimuthal planes.Moreover,the three-body formalism of three-Coulomb,two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models.In the three-Coulomb wave model,the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction.In this formalism,we use an uncorrelated and correlated Born initial state,which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s^(2)(1S)state.But,in the case of the three-body formalism,the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan–Hartree–Fock wavefunction.The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions.In addition,the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target.In the four-body formalism,the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral.Despite the simplicity and speed of the proposed quadrature,the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.展开更多
The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first ti...The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.展开更多
The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))a...The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.展开更多
The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energ...The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.展开更多
This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section...This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.展开更多
To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The m...To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The measurement is performed at the Back-n white neutron source with a 76-m time-of-flight path using the China Spallation Neutron Source. A multilayer fast fission chamber with 235U and 238U is employed as the neutron detector. The diameter and thickness of the natural graphite sample are 70 mm and 40 mm, respectively. Signal waveforms are collected using a data acquisition system. Off-line data processing was used to obtain the neutron time-of-flight spectra and transmissions. The uncertainty of the counting statistics is generally approximately 3% for each bin in the energy range of 1–20 MeV. It is determined that the results for the neutron total cross section of carbon obtained using ^235U cells are in good agreement with the results obtained using 238U cells within limits of statistical uncertainty. Moreover, the measured total cross sections show good agreement with the broadening evaluated data.展开更多
In order to study the influence of the shell effects on the formation and fission of superheavy elements, we applied multidimensional Langevin equations. The evaporation residue cross sections have been calculated for...In order to study the influence of the shell effects on the formation and fission of superheavy elements, we applied multidimensional Langevin equations. The evaporation residue cross sections have been calculated for 3n, 4n, and 5n evaporation channels using three(K = 0)-and four(K ≠ 0)-dimensional Langevin equations. Calculations were done for ^(48)Ca + ^(238)U and ^(48)Ca + ^(244)Pu hot fusion reactions with 3n, An evaporation channels and ^(70)Zn+ ^(208)Pb, and ^(54)Cr + ^(209)Bi cold fusion reactions with In and 2n evaporation channels. The calculations were performed for An and 5n evaporation channels of the ^(26)Mg+ ^(238)U reaction, as well. Our results show that with increasing dimension of Langevin equations the residue cross section increases, whereas the fission cross section decreases. The obtained results with four-dimensional Langevin and considering shell effects are in better agreement with experimental data in comparison with three-and four-dimensional Langevin equations without shell effects.展开更多
A new anisotropic potential is fitted to ab initio data. The close-coupling approach is utilized to calculate state-tostate rotational excitation partial wave cross sections for elastic and inelastic collisions of He ...A new anisotropic potential is fitted to ab initio data. The close-coupling approach is utilized to calculate state-tostate rotational excitation partial wave cross sections for elastic and inelastic collisions of He atom with HBr molecule based on the fitted potential. The calculation is performed separately at the incident energies: 75, 100 and 200 meV.The tendency of the elastic and inelastic rotational excitation partial wave cross sections varying with total angular quantum number J is obtained.展开更多
In this paper, close-coupling method was applied to the He-H2 (D2,T2) system, and the first vibrational excitation cross sections of '00-10, 00-12, 00-14, 00-16' at different incident energy have been calculated. ...In this paper, close-coupling method was applied to the He-H2 (D2,T2) system, and the first vibrational excitation cross sections of '00-10, 00-12, 00-14, 00-16' at different incident energy have been calculated. By analyzing the ditferences of these partial wave cross sections, this paper have obtained the change rules of the partial wave cross sections with increases of quantum number, and with change of reduced mass of system. Based on the calculation, influence on the partial wave cross sections brought by the variations in the reduced mass of systems and in the relative kinetic energy of incident atoms is discussed.展开更多
An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the ...An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the energy of the spallation neutrons can reach several hundred megaelectron volts. However, the upper neutron energy limit of nuclear cross-section databases, which are widely used in critical reactor physics calculations, is generally 20 MeV.This is not suitable for simulating the transport of highenergy spallation neutrons in the ADS. We combine the Japanese JENDL-4.0/HE high-energy evaluation database and the ADS-HE and ADS 2.0 libraries from the International Atomic Energy Agency and process all the data files for nuclides with energies greater than 20 MeV. We use the continuous pointwise cross-section program NJOY2016 to generate the ACE-formatted cross-section data library IMPC-ADS at multiple temperature points. Using the IMPC-ADS library, we calculate 10 critical benchmarks of the International Criticality Safety Benchmark Evaluation Project manual, the 14-MeV fixed-source problem of the Godiva sphere, and the neutron flux of the ADS subcritical core by MCNPX. To verify the correctness of the IMPCADS, the results were compared with those calculated using the ENDF/B-VII.0 library. The results showed thatthe IMPC-ADS is reliable in effective multiplication factor and neutron flux calculations, and it can be applied to physical analysis of the ADS subcritical reactor core.展开更多
This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in ...This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in terms of three aspects:numerical parameters, input layer, and network structure. First, by minimizing the deviations between the predictions and data, the numerical parameters, including the hidden layer number, hidden node number, and activation function, were selected. It was found that the BNN with three hidden layers, 10 hidden nodes, and sigmoid activation function provided the smallest deviations. Second, based on known knowledge,such as the isospin dependence and shape effect, the optimal ground-state properties were selected as input neurons. Third, the Lorentzian function was applied to map the hidden nodes to the output cross sections, and the empirical formula of the Lorentzian parameters was applied to link some of the input nodes to the output cross sections. It was found that the last two aspects improved the predictions and avoided overfitting, especially for the axially deformed nucleus.展开更多
Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative....Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative.Thus,the RCS of a naval ship has become a very important design factor for achieving surprise,initiative,and survivability.Consequently,accurate RCS determination and RCS reduction are of extreme importance for a naval ship.The purpose of this paper is to provide an understanding of the theoretical background and engineering approach to deal with RCS prediction and reduction for naval ships.The importance of RCS,radar fundamentals,RCS basics,RCS prediction methods,and RCS reduction methods for naval ships is also discussed.展开更多
A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial ...A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial magnetic conductors(AMCs) tiles consisting of three types of basic units resonant at different frequencies are designed and arranged in a novel quadruple-triangle-type configuration to create a composite planar metasurface. The proposed metasurface is characterized by low radar feature over an ultra-wideband based on the principle of phase cancellation. Both simulated and measured results demonstrate that after the composite metasurface is used to cover part of the antenna array, an ultrawideband RCSR involving in-band and out-of-band is achieved for co-and cross-polarized incident waves based on energy cancellation, while the radiation performance is well retained. The proposed method is simple, low-cost, and easy-tofabricate, providing a new method for ultra-wideband RCSR of an antenna array. Moreover, the method proposed in this paper can easily be applied to other antenna architectures.展开更多
The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture ...The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture events were detected using four C_(6)D_(6) detectors.The pulse-height weighting technique and double-bunch unfolding method based on Bayesian theory were used in the data analysis.Background deductions,normalization,and corrections were carefully considered to obtain reliable measurement results.The multilevel R-matrix Bayesian code SAMMY was used to extract the resonance parameters in the resolved resonance region(RRR).The average cross sections in the unresolved resonance region(URR)were obtained from 10 to 400 keV.The experimental results were compared with data from several evaluated libraries and previous experi-ments in the RRR and URR.The TALYS code was used to describe the average cross sections in the URR.The astrophysical Maxwell average cross sections(MACSs)of ^(79,81)Br from kT=5 to 100 keV were calculated over a sufficiently wide range of neutron energies.At a thermal energy of kT=30 keV,the MACS value for ^(79)Br 682±68 mb was in good agreement with the KADoNiS v1.0 recommended value.By contrast,the value of 293±29 mb for ^(81)Br was substantially higher than that of the evaluated database and the KADoNiS v1.0 recommended value.展开更多
The neutron capture cross section of 197 Au was measured using the time-of-flight(TOF)technique at the Back-n facility of the China Spallation Neutron Source(CSNS)in the 1 eV to 100 keV range.Prompt c-rays originating...The neutron capture cross section of 197 Au was measured using the time-of-flight(TOF)technique at the Back-n facility of the China Spallation Neutron Source(CSNS)in the 1 eV to 100 keV range.Prompt c-rays originating from neutron-induced capture events were detected by four C_(6)D_(6) liquid scintillator detectors.Pulse height weighting technology(PHWT)was used to analyze the data.The results are in good agreement with ENDF/B-VIII.0,CENDL-3.1,and other evaluated libraries in the resonance region,and in agreement with both n TOF and GELINA experimental data in the 5–100 keV range.Finally,the resonance peaks in the energy range from 1eV to 1 keV were fitted by the SAMMY R-matrix code.展开更多
The dissociative ionization of CO2 induced by 5 keV electrons in two-body and three-body dissociative channels of CO2+2 and CO3+2 is identified by the ion-ion coincidence- method using a momentum imaging spectromete...The dissociative ionization of CO2 induced by 5 keV electrons in two-body and three-body dissociative channels of CO2+2 and CO3+2 is identified by the ion-ion coincidence- method using a momentum imaging spectrometer. The partial ionization cross sections (PICSs) of different ionic fragments are measured and the results generally agree with the calculations made by a semi-empirical approach. Furthermore, the PICSs of the dissociative channels are also obtained by carefully considering the detection efficiency of the micro-channel plates and the total transmission efficiency of the time of flight system.展开更多
The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurem...The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurement of the^(232)Th(n,f)cross sec-tion relative to^(235)U in the 1–200 MeV range was performed at the China Spallation Neutron Source Back-n white neutron source(Back-n).The fission event-neutron energy spectra of^(232)Th and^(235)U fission cells were measured in the single-bunch mode.Corrected 232Th/235U fission cross-sectional ratios were obtained,and the measurement uncertainties were 2.5–3.7%for energies in the 2–20 MeV range and 3.6–6.2%for energies in the 20–200 MeV range.The^(232)Th(n,f)cross section was obtained by introducing the standard cross section of^(235)U(n,f).The results were compared with those of previous theoreti-cal calculations,measurements,and evaluations.The measured 232Th fission cross section agreed with the main evaluation results in terms of the experimental uncertainty,and 232Th fission resonances were observed in the 1–3 MeV range.The present results provide^(232)Th(n,f)cross-sectional data for the evaluation and design of Th/U cycle nuclear systems.展开更多
Photonuclear reactions using a laser Compton scattering(LCS)gamma source provide a new method for producing radioisotopes for medical applications.Compared with the conventional method,this method has the advantages o...Photonuclear reactions using a laser Compton scattering(LCS)gamma source provide a new method for producing radioisotopes for medical applications.Compared with the conventional method,this method has the advantages of a high specific activity and less heat.Initiated by the Shanghai Laser Electron Gamma Source(SLEGS),we conducted a survey of potential photonuclear reactions,(γ,n),(γ,p),and(γ,γ')whose cross sections can be measured at SLEGS by summarising the experimental progress.In general,the data are rare and occasionally inconsistent.Therefore,theoretical calculations are often used to evaluate the production of medical radioisotopes.Subsequently,we verified the model uncertainties of the widely used reaction code TALYS-1.96,using the experimental data of the^(100)Mo(γ,n)^(99)Mo,^(65)Cu(γ,n)^(64)Cu,and^(68)Zn(γ,p)^(67)Cu reactions.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.12105327 and 11775108)the Hunan Provincial Innovation Foundation For Postgraduate(No.QL20220210)the Advanced Energy Science and Technology Guangdong Laboratory.
文摘Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead to energy loss.This study employs the classical trajectory Monte Carlo method to study the SI and SC processes of H_(2)O molecules using He^(2+) and C^(6+) projectiles in the energy range of 10 keV/u to 10 MeV/u.The total cross sections,single differential cross sections,impact parameter dependence of SI and SC,and fragmentation cross sections were investigated.Results illustrate that the cross section for SI is the highest when the projectile energy is close to the Bragg peak energy.When the projectile energy is below the Bragg peak energy,the ionized electrons in the forward direction dominate,and the removal of electrons can be associated with large impact parameters.As the projectile energy increases,the emission angle of the electrons gradually transitions from small angles(60°~120°)to large angles(60°~120°),and the removal of electrons is associated with small impact parameters.The energy distributions of the ionized electron are similar when the projectile energy is equal to,below or above the Bragg peak energy.The fragmentation cross sections after SI and SC in the energy range around the Bragg peak were also estimated.
基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(NLK 2022-04)the Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike,ZY22096024)+1 种基金the National Natural Science Foundation of China(12065003)Guangxi Key R&D Project(2023AB07029).
文摘Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.
基金Project supported by the Science and Engineering Research Board(SERB),New Delhi,India(Grant No.CRG/2022/001668).
文摘We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering,perpendicular and azimuthal planes.Moreover,the three-body formalism of three-Coulomb,two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models.In the three-Coulomb wave model,the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction.In this formalism,we use an uncorrelated and correlated Born initial state,which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s^(2)(1S)state.But,in the case of the three-body formalism,the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan–Hartree–Fock wavefunction.The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions.In addition,the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target.In the four-body formalism,the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral.Despite the simplicity and speed of the proposed quadrature,the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402400)the National Natural Science Foundation of China(Grant Nos.11974358 and 11934004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)the Heavy Ion Research Facility in Lanzhou(HIRFL).
文摘The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1602502)the National Natural Science Foundation of China (Grant No.12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB34000000)。
文摘The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.
基金This work is supported by the National Natural Science Foundation of China(No.12375296)the Key Laboratory of Nuclear Data Foundation(No.JCKY2022201C153)+2 种基金the Natural Science Foundation of Hunan Province of China(Nos.2021JJ40444,2020RC3054)the Youth Innovation Promotion Association CAS(No.2023014)the National Key Research and Development Plan(No.2022YFA1603303).
文摘The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.
基金The research is supported by Project of National Natural Science Foundation of China(30571455)and National "948" Project(2005-4-62)
文摘This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.
基金supported by the National Key Research and Development Plan(No.2016YFA0401603)the National Natural Science Foundation of China(No.11675155)
文摘To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The measurement is performed at the Back-n white neutron source with a 76-m time-of-flight path using the China Spallation Neutron Source. A multilayer fast fission chamber with 235U and 238U is employed as the neutron detector. The diameter and thickness of the natural graphite sample are 70 mm and 40 mm, respectively. Signal waveforms are collected using a data acquisition system. Off-line data processing was used to obtain the neutron time-of-flight spectra and transmissions. The uncertainty of the counting statistics is generally approximately 3% for each bin in the energy range of 1–20 MeV. It is determined that the results for the neutron total cross section of carbon obtained using ^235U cells are in good agreement with the results obtained using 238U cells within limits of statistical uncertainty. Moreover, the measured total cross sections show good agreement with the broadening evaluated data.
文摘In order to study the influence of the shell effects on the formation and fission of superheavy elements, we applied multidimensional Langevin equations. The evaporation residue cross sections have been calculated for 3n, 4n, and 5n evaporation channels using three(K = 0)-and four(K ≠ 0)-dimensional Langevin equations. Calculations were done for ^(48)Ca + ^(238)U and ^(48)Ca + ^(244)Pu hot fusion reactions with 3n, An evaporation channels and ^(70)Zn+ ^(208)Pb, and ^(54)Cr + ^(209)Bi cold fusion reactions with In and 2n evaporation channels. The calculations were performed for An and 5n evaporation channels of the ^(26)Mg+ ^(238)U reaction, as well. Our results show that with increasing dimension of Langevin equations the residue cross section increases, whereas the fission cross section decreases. The obtained results with four-dimensional Langevin and considering shell effects are in better agreement with experimental data in comparison with three-and four-dimensional Langevin equations without shell effects.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574096,10676025) and the Natural Science Foundation of Education Bureau of Anhui Province, China.
文摘A new anisotropic potential is fitted to ab initio data. The close-coupling approach is utilized to calculate state-tostate rotational excitation partial wave cross sections for elastic and inelastic collisions of He atom with HBr molecule based on the fitted potential. The calculation is performed separately at the incident energies: 75, 100 and 200 meV.The tendency of the elastic and inelastic rotational excitation partial wave cross sections varying with total angular quantum number J is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574096), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20020610001), the Natural Science Foundation of Education Bureau of Guizhou Province, China (Grant No QJK 2005105) and Scientific Research Foundation of Young Teacher of Guizhou Normal University, China.
文摘In this paper, close-coupling method was applied to the He-H2 (D2,T2) system, and the first vibrational excitation cross sections of '00-10, 00-12, 00-14, 00-16' at different incident energy have been calculated. By analyzing the ditferences of these partial wave cross sections, this paper have obtained the change rules of the partial wave cross sections with increases of quantum number, and with change of reduced mass of system. Based on the calculation, influence on the partial wave cross sections brought by the variations in the reduced mass of systems and in the relative kinetic energy of incident atoms is discussed.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA03030102)
文摘An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the energy of the spallation neutrons can reach several hundred megaelectron volts. However, the upper neutron energy limit of nuclear cross-section databases, which are widely used in critical reactor physics calculations, is generally 20 MeV.This is not suitable for simulating the transport of highenergy spallation neutrons in the ADS. We combine the Japanese JENDL-4.0/HE high-energy evaluation database and the ADS-HE and ADS 2.0 libraries from the International Atomic Energy Agency and process all the data files for nuclides with energies greater than 20 MeV. We use the continuous pointwise cross-section program NJOY2016 to generate the ACE-formatted cross-section data library IMPC-ADS at multiple temperature points. Using the IMPC-ADS library, we calculate 10 critical benchmarks of the International Criticality Safety Benchmark Evaluation Project manual, the 14-MeV fixed-source problem of the Godiva sphere, and the neutron flux of the ADS subcritical core by MCNPX. To verify the correctness of the IMPCADS, the results were compared with those calculated using the ENDF/B-VII.0 library. The results showed thatthe IMPC-ADS is reliable in effective multiplication factor and neutron flux calculations, and it can be applied to physical analysis of the ADS subcritical reactor core.
基金supported by the National Natural Science Foundation of China(Nos.11905018 and 11875328).
文摘This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in terms of three aspects:numerical parameters, input layer, and network structure. First, by minimizing the deviations between the predictions and data, the numerical parameters, including the hidden layer number, hidden node number, and activation function, were selected. It was found that the BNN with three hidden layers, 10 hidden nodes, and sigmoid activation function provided the smallest deviations. Second, based on known knowledge,such as the isospin dependence and shape effect, the optimal ground-state properties were selected as input neurons. Third, the Lorentzian function was applied to map the hidden nodes to the output cross sections, and the empirical formula of the Lorentzian parameters was applied to link some of the input nodes to the output cross sections. It was found that the last two aspects improved the predictions and avoided overfitting, especially for the axially deformed nucleus.
基金Supported by Program for New Century Excellent Talents in University under Grant No.NCET-07-0230the "111" Project under Grant No.B07019 at Harbin Engineering University
文摘Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative.Thus,the RCS of a naval ship has become a very important design factor for achieving surprise,initiative,and survivability.Consequently,accurate RCS determination and RCS reduction are of extreme importance for a naval ship.The purpose of this paper is to provide an understanding of the theoretical background and engineering approach to deal with RCS prediction and reduction for naval ships.The importance of RCS,radar fundamentals,RCS basics,RCS prediction methods,and RCS reduction methods for naval ships is also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61671464,61701523,and 61471389)
文摘A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial magnetic conductors(AMCs) tiles consisting of three types of basic units resonant at different frequencies are designed and arranged in a novel quadruple-triangle-type configuration to create a composite planar metasurface. The proposed metasurface is characterized by low radar feature over an ultra-wideband based on the principle of phase cancellation. Both simulated and measured results demonstrate that after the composite metasurface is used to cover part of the antenna array, an ultrawideband RCSR involving in-band and out-of-band is achieved for co-and cross-polarized incident waves based on energy cancellation, while the radiation performance is well retained. The proposed method is simple, low-cost, and easy-tofabricate, providing a new method for ultra-wideband RCSR of an antenna array. Moreover, the method proposed in this paper can easily be applied to other antenna architectures.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1832182,11875328,11761161001,and U2032137)the Natural Science Foundation of Guangdong Province,China(Nos.18zxxt65 and 2022A1515011184)+3 种基金the Science and Technology Development Fund,Macao SAR(Grant No.008/2017/AFJ)the Macao Young Scholars Program of China(No.AM201907)the China Postdoctoral Science Foundation(Nos.2016LH0045 and 2017M621573)the Fundamental Research Funds for the Central Universities(Nos.22qntd3101 and 2021qntd28).
文摘The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture events were detected using four C_(6)D_(6) detectors.The pulse-height weighting technique and double-bunch unfolding method based on Bayesian theory were used in the data analysis.Background deductions,normalization,and corrections were carefully considered to obtain reliable measurement results.The multilevel R-matrix Bayesian code SAMMY was used to extract the resonance parameters in the resolved resonance region(RRR).The average cross sections in the unresolved resonance region(URR)were obtained from 10 to 400 keV.The experimental results were compared with data from several evaluated libraries and previous experi-ments in the RRR and URR.The TALYS code was used to describe the average cross sections in the URR.The astrophysical Maxwell average cross sections(MACSs)of ^(79,81)Br from kT=5 to 100 keV were calculated over a sufficiently wide range of neutron energies.At a thermal energy of kT=30 keV,the MACS value for ^(79)Br 682±68 mb was in good agreement with the KADoNiS v1.0 recommended value.By contrast,the value of 293±29 mb for ^(81)Br was substantially higher than that of the evaluated database and the KADoNiS v1.0 recommended value.
基金supported by the National Natural Science Foundation of China(Nos.11875311,11905274,11705156,and 11605097)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB34030000)。
文摘The neutron capture cross section of 197 Au was measured using the time-of-flight(TOF)technique at the Back-n facility of the China Spallation Neutron Source(CSNS)in the 1 eV to 100 keV range.Prompt c-rays originating from neutron-induced capture events were detected by four C_(6)D_(6) liquid scintillator detectors.Pulse height weighting technology(PHWT)was used to analyze the data.The results are in good agreement with ENDF/B-VIII.0,CENDL-3.1,and other evaluated libraries in the resonance region,and in agreement with both n TOF and GELINA experimental data in the 5–100 keV range.Finally,the resonance peaks in the energy range from 1eV to 1 keV were fitted by the SAMMY R-matrix code.
基金supported by the National Basic Research Program of China(Grant No.2010CB923301)the National Natural Science Foundation of China(Grant Nos.11327404,10979007,and 10734040)the Fundamental Research Funds for the Central Universities,China
文摘The dissociative ionization of CO2 induced by 5 keV electrons in two-body and three-body dissociative channels of CO2+2 and CO3+2 is identified by the ion-ion coincidence- method using a momentum imaging spectrometer. The partial ionization cross sections (PICSs) of different ionic fragments are measured and the results generally agree with the calculations made by a semi-empirical approach. Furthermore, the PICSs of the dissociative channels are also obtained by carefully considering the detection efficiency of the micro-channel plates and the total transmission efficiency of the time of flight system.
基金supported by the National Natural Science Foundation of China(Nos.11675155,11790321,and 12075216)the National Key Research and Development Plan(No.2016YFA0401603).
文摘The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurement of the^(232)Th(n,f)cross sec-tion relative to^(235)U in the 1–200 MeV range was performed at the China Spallation Neutron Source Back-n white neutron source(Back-n).The fission event-neutron energy spectra of^(232)Th and^(235)U fission cells were measured in the single-bunch mode.Corrected 232Th/235U fission cross-sectional ratios were obtained,and the measurement uncertainties were 2.5–3.7%for energies in the 2–20 MeV range and 3.6–6.2%for energies in the 20–200 MeV range.The^(232)Th(n,f)cross section was obtained by introducing the standard cross section of^(235)U(n,f).The results were compared with those of previous theoreti-cal calculations,measurements,and evaluations.The measured 232Th fission cross section agreed with the main evaluation results in terms of the experimental uncertainty,and 232Th fission resonances were observed in the 1–3 MeV range.The present results provide^(232)Th(n,f)cross-sectional data for the evaluation and design of Th/U cycle nuclear systems.
基金supported by the National Key R&D Program of China(No.2022YFA1602401)the National Natural Science Foundation of China(Nos.11961141004,U1832211,11922501,12325506)the National Basic Science Data Center‘Medical Physics DataBase’(No.NBSDC-DB-23)。
文摘Photonuclear reactions using a laser Compton scattering(LCS)gamma source provide a new method for producing radioisotopes for medical applications.Compared with the conventional method,this method has the advantages of a high specific activity and less heat.Initiated by the Shanghai Laser Electron Gamma Source(SLEGS),we conducted a survey of potential photonuclear reactions,(γ,n),(γ,p),and(γ,γ')whose cross sections can be measured at SLEGS by summarising the experimental progress.In general,the data are rare and occasionally inconsistent.Therefore,theoretical calculations are often used to evaluate the production of medical radioisotopes.Subsequently,we verified the model uncertainties of the widely used reaction code TALYS-1.96,using the experimental data of the^(100)Mo(γ,n)^(99)Mo,^(65)Cu(γ,n)^(64)Cu,and^(68)Zn(γ,p)^(67)Cu reactions.