期刊文献+
共找到398篇文章
< 1 2 20 >
每页显示 20 50 100
Flatness predictive model based on T-S cloud reasoning network implemented by DSP 被引量:4
1
作者 ZHANG Xiu-ling GAO Wu-yang +1 位作者 LAI Yong-jin CHENG Yan-tao 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2222-2230,共9页
The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digita... The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter. 展开更多
关键词 t-s CLOUD reasoning neural network CLOUD model FLATNESS predictive model hardware implementation digital signal PROCESSOR genetic ALGORITHM and simulated annealing ALGORITHM (GA-SA)
在线阅读 下载PDF
The Fuzzy Modeling Algorithm for Complex Systems Based on Stochastic Neural Network
2
作者 李波 张世英 李银惠 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第3期46-51,共6页
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge... A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness. 展开更多
关键词 Complex system modeling General stochastic neural network MTS fuzzy model Expectation-maximization algorithm
在线阅读 下载PDF
基于模糊T-S型内模PID控制算法的无刷直流电机仿真分析 被引量:1
3
作者 孙崇智 吴永伟 +2 位作者 安建民 杨佳 郭伟伟 《现代电子技术》 北大核心 2024年第24期18-24,共7页
针对无刷直流电机(BLDCM)双闭环控制调速系统的控制响应速度慢、转速波动较大等问题,提出一种模糊神经网络与内模控制相结合的驱动方式。该方式利用Matlab/Simulink来构建一种基于BLDCM和控制器的电梯一体式限速器仿真模型,得到BLDCM的... 针对无刷直流电机(BLDCM)双闭环控制调速系统的控制响应速度慢、转速波动较大等问题,提出一种模糊神经网络与内模控制相结合的驱动方式。该方式利用Matlab/Simulink来构建一种基于BLDCM和控制器的电梯一体式限速器仿真模型,得到BLDCM的速度、转矩响应曲线。仿真分析和实验结果均表明,模糊T-S型内模PID控制算法在响应速度、转速误差、抗干扰能力和控制精度等性能方面优于内模PID控制算法与常规双闭环PID控制系统。该研究可为模糊神经网络T-S型内模PID算法在电梯一体式限速器上的应用积累经验。 展开更多
关键词 无刷直流电机 模糊t-s 内模PID控制 双闭环控制系统 模糊神经网络 电梯限速器
在线阅读 下载PDF
Robust fuzzy control of Takagi-Sugeno fuzzy neural networks with discontinuous activation functions and time delays
4
作者 Yaonan Wang Xiru Wu Yi Zuo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期473-481,共9页
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor... The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results. 展开更多
关键词 delayed neural network global robust asymptotical stability discontinuous neuron activation linear matrix inequality(LMI) Takagi-sugeno(t-s fuzzy model.
在线阅读 下载PDF
On-Line Real Time Realization and Application of Adaptive Fuzzy Inference Neural Network
5
作者 Han, Jianguo Guo, Junchao Zhao, Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期67-74,共8页
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and... In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed. 展开更多
关键词 fuzzy control Identification (control systems) Inference engines Learning algorithms Mathematical models Multivariable control systems neural networks Nonlinear control systems Real time systems
在线阅读 下载PDF
基于T-S模型的自适应神经模糊推理系统及其在热工过程建模中的应用 被引量:24
6
作者 于希宁 程锋章 +1 位作者 朱丽玲 王毅佳 《中国电机工程学报》 EI CSCD 北大核心 2006年第15期78-82,共5页
在工业热工过程控制中,被控对象动态特性往往表现出非线性、时变性、大迟延和大惯性等特点,这使得难以对其建立比较精确的模型,从而难于精确表达热工过程及实施整体优化控制。针对热工过程建模难的现状,为达到建立精确非线性模型的目的... 在工业热工过程控制中,被控对象动态特性往往表现出非线性、时变性、大迟延和大惯性等特点,这使得难以对其建立比较精确的模型,从而难于精确表达热工过程及实施整体优化控制。针对热工过程建模难的现状,为达到建立精确非线性模型的目的,提出1种基于T-S模型的自适应神经模糊系统(ANFIS)模糊建模方法。该方法通过对模糊系统的结构辨识和参数辨识,使神经模糊网络能够自主、迅速有效地收敛到要求的输入和输出关系,从而达到精确建模的目的。仿真结果验证了所提出的算法的有效性,将其应用到热工过程建模中可获得高精度的非线性模型。 展开更多
关键词 热工过程 自适应神经模糊推理系统 模糊建模 神经网络 非线性
在线阅读 下载PDF
基于T-S模型的模糊神经网络城市需水量预测方法研究 被引量:15
7
作者 孙月峰 闫雅飞 +1 位作者 张表志 刘少博 《安全与环境学报》 CAS CSCD 北大核心 2013年第2期136-139,共4页
针对需水量预测的非线性、随机性和模糊性等特点,引入模糊系统理论,建立了基于T-S模型的模糊神经网络需水量预测模型。该模型将模糊系统良好的模糊知识表达能力与神经网络强大的自学习和自适应能力有机结合,具有逼近最优、收敛速度快、... 针对需水量预测的非线性、随机性和模糊性等特点,引入模糊系统理论,建立了基于T-S模型的模糊神经网络需水量预测模型。该模型将模糊系统良好的模糊知识表达能力与神经网络强大的自学习和自适应能力有机结合,具有逼近最优、收敛速度快、训练时间短等优点。应用该模型预测了天津市2015年的需水量。结果表明,采用基于T-S模型的模糊神经网络方法进行需水量预测的拟合与预测平均相对误差分别为3.39%和2.67%。将该模型与BP神经网络和非线性回归方法的预测结果进行对比分析,该模型的拟合与预测精度最高。 展开更多
关键词 水文学 模糊理论 BP神经网络 需水量预测 模型
在线阅读 下载PDF
神经网络结构的递归T-S模糊模型 被引量:10
8
作者 李翔 陈增强 袁著祉 《系统工程学报》 CSCD 2001年第4期268-274,共7页
提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建... 提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建模方面 TSFRNN比 TSFNN更加优越 . 展开更多
关键词 递归神经网络 t-s模糊模型 非线性系统 建模 学习算法
在线阅读 下载PDF
基于T-S模糊神经网络的采空塌陷危险性判别 被引量:11
9
作者 张连杰 武雄 +1 位作者 谢永 吴晨亮 《现代地质》 CAS CSCD 北大核心 2015年第2期461-465,共5页
采空区地面塌陷的危险性判别受地质因素、采矿因素等多重因素的影响,各因素往往影响程度不同且部分因素之间又相互联系。为了能够较准确地对采空塌陷危险性进行评估,引入了T-S模糊神经网络模型。以北京西山地区采空塌陷为例,根据塌陷特... 采空区地面塌陷的危险性判别受地质因素、采矿因素等多重因素的影响,各因素往往影响程度不同且部分因素之间又相互联系。为了能够较准确地对采空塌陷危险性进行评估,引入了T-S模糊神经网络模型。以北京西山地区采空塌陷为例,根据塌陷特点,分别选取了地质构造复杂程度、覆盖层类型、第四系覆盖层厚度、覆岩强度、煤层倾角、采深采厚比、采空区埋深、采空区空间叠置层数8项影响因素作为评价指标,并建立了分级标准。将单因素评价指标均匀线性插值作为训练样本,建立了T-S模糊神经网络判别模型。利用训练好的神经网络模型对选取的8处采空区进行评估,结果分别为:Ⅰ、Ⅱ、Ⅲ、Ⅱ、Ⅲ、Ⅱ、Ⅲ、Ⅱ,结果与实际情况吻合。研究表明,利用T-S模糊神经网络研究采空塌陷危险性是可行的。 展开更多
关键词 采空区 地面塌陷 评价 t-s模糊神经网络模型
在线阅读 下载PDF
水下机器人T-S型模糊神经网络控制 被引量:18
10
作者 梁霄 张均东 +3 位作者 李巍 郭冰洁 万磊 徐玉如 《电机与控制学报》 EI CSCD 北大核心 2010年第7期99-104,共6页
针对水下机器人模糊神经网络控制器运算量大和对强外界扰动的鲁棒性差及存在滞后性的问题,提出基于混合学习算法的水下机器人T-S型模糊神经网络控制方法。采用免疫遗传算法离线优化和神经网络自学习在线调整隶属函数的参数,从而减少神... 针对水下机器人模糊神经网络控制器运算量大和对强外界扰动的鲁棒性差及存在滞后性的问题,提出基于混合学习算法的水下机器人T-S型模糊神经网络控制方法。采用免疫遗传算法离线优化和神经网络自学习在线调整隶属函数的参数,从而减少神经网络的运算量,增强水下机器人对环境变化的反应能力。采用T-S模型,由后件网络动态调整模糊规则,提高控制系统的适应性。通过某微小型水下机器人的仿真和外场实验验证方法的可行性和优越性。实验结果表明,控制器对外界扰动具有较强的鲁棒性,保证即使在恶劣情况下,控制性能仍保持在较高水平。 展开更多
关键词 水下机器人 模糊神经网络控制 免疫遗传算法 混合学习算法 t-s模型
在线阅读 下载PDF
基于T-S模糊神经网络的模型在台风灾情预测中的应用——以海南为例 被引量:15
11
作者 张广平 张晨晓 谢忠 《灾害学》 CSCD 北大核心 2013年第2期86-89,共4页
使用1992-2011年间海南省台风灾害数据,综合T-S模糊神经网络的模糊逻辑和神经网络学习优化的性能,设计了一种灾害损失预测模型并定量地表达了台风灾害损失致灾因子与灾情指标因子之间的规律。调节模型的参数cji、σji和pji(k),控制学习... 使用1992-2011年间海南省台风灾害数据,综合T-S模糊神经网络的模糊逻辑和神经网络学习优化的性能,设计了一种灾害损失预测模型并定量地表达了台风灾害损失致灾因子与灾情指标因子之间的规律。调节模型的参数cji、σji和pji(k),控制学习性能指标误差值Ep和总误差E来优化模型的性能。将模型应用于201108号台风"洛坦"灾害损失预测中,实验结果表明该模型具有较好的预测功能。 展开更多
关键词 台风灾害 预测模型 t-s模糊神经网络 海南
在线阅读 下载PDF
木材干燥过程温湿度的T-S型模糊神经网络控制器设计 被引量:8
12
作者 姜滨 孙丽萍 曹军 《电机与控制学报》 EI CSCD 北大核心 2016年第10期114-120,共7页
木材干燥过程是一个强耦合、大滞后的非线性动力系统,很难准确建立被控对象的数学模型。为了准确控制木材干燥过程的温度和湿度,提高木材干燥质量,将智能控制引入木材干燥控制系统是必然的发展趋势。结合模糊控制和神经网络优点,设计了... 木材干燥过程是一个强耦合、大滞后的非线性动力系统,很难准确建立被控对象的数学模型。为了准确控制木材干燥过程的温度和湿度,提高木材干燥质量,将智能控制引入木材干燥控制系统是必然的发展趋势。结合模糊控制和神经网络优点,设计了一种木材干燥窑内温湿度的Takagi-Sugeno(T-S)型模糊神经网络控制器。该控制器无需对象的精确数学模型,适应性强,利用模糊算法解除木材干燥窑内温度和湿度间的强耦合关系,采用神经网络的自学习和自适应能力来实现整个非线性过程的模糊逻辑推理。仿真和实验结果表明,T-S型模糊神经网络控制器有效解决了木材干燥过程的温湿度控制,控制器响应速度快、超调小、鲁棒性强、控制精确度高,可以满足木材干燥控制系统要求。 展开更多
关键词 木材干燥过程 t-s模型 模糊神经网络控制器 温湿度控制 神经网络
在线阅读 下载PDF
基于T-S模糊神经网络模型的榆林市土壤风蚀危险度评价 被引量:14
13
作者 刘新颜 曹晓仪 董治宝 《地理科学》 CSCD 北大核心 2013年第6期741-747,共7页
选择位于风沙过渡区的榆林市为研究区域,以GIS技术和T-S模糊神经网络为依托,从土壤风蚀影响因子及风蚀动力学机制出发构建区域土壤风蚀危险度模型。基于此模型,对榆林市土壤风蚀危险度空间分异特征进行了分析,结果表明:T-S模糊神经网络... 选择位于风沙过渡区的榆林市为研究区域,以GIS技术和T-S模糊神经网络为依托,从土壤风蚀影响因子及风蚀动力学机制出发构建区域土壤风蚀危险度模型。基于此模型,对榆林市土壤风蚀危险度空间分异特征进行了分析,结果表明:T-S模糊神经网络模型可有效地揭示出区域土壤风蚀危险度与环境之间的映射关系,为土壤风蚀预测提供依据;风力、植被、气温、降水、地形等环境要素控制着土壤风蚀危险度空间分异格局;榆林市土壤风蚀危险度空间分异格局表现为:危险度从西北向东南逐渐降低。 展开更多
关键词 榆林市 土壤风蚀 t-s模糊神经网络 危险度评价
在线阅读 下载PDF
基于T-S模糊模型的半主动悬架控制研究 被引量:4
14
作者 陈龙 杨谋存 +2 位作者 薛念文 江浩斌 陈杨 《江苏大学学报(自然科学版)》 EI CAS 2004年第5期385-388,共4页
在1/4车辆悬架数学模型的基础上,分别采用T S和Mamdani模糊控制策略,建立模糊模型的半主动悬架控制系统,分析和比较了两种控制系统的性能,设计了基于CIP 51为核心的单片机控制器,并进行了半主动台架试验.计算和试验结果表明,模糊控制器... 在1/4车辆悬架数学模型的基础上,分别采用T S和Mamdani模糊控制策略,建立模糊模型的半主动悬架控制系统,分析和比较了两种控制系统的性能,设计了基于CIP 51为核心的单片机控制器,并进行了半主动台架试验.计算和试验结果表明,模糊控制器均能有效地控制半主动悬架系统,提高车辆的乘坐舒适性,改善车辆的性能.与普通Mamdani模糊控制相比,T S模糊控制器具有设计简单,运算速度快,便于实时控制的优点,验证了T S模糊控制方法的有效性和优越性. 展开更多
关键词 半主动悬架 t-s模糊模型 神经网络控制 台架试验
在线阅读 下载PDF
基于T-S模型的模糊神经网络PID控制 被引量:7
15
作者 姜映红 叶碧成 《控制工程》 CSCD 2006年第6期540-542,546,共4页
针对在非线性、时变不确定系统中,常规PID控制器难以获得满意效果的问题,仿照传统PID控制器结构,设计了一种基于T-S模型的模糊神经网络PID控制器。该控制器基于T-S模糊模型,将PID结构融入模糊控制中,充分发挥了模糊系统非线性、可解释... 针对在非线性、时变不确定系统中,常规PID控制器难以获得满意效果的问题,仿照传统PID控制器结构,设计了一种基于T-S模型的模糊神经网络PID控制器。该控制器基于T-S模糊模型,将PID结构融入模糊控制中,充分发挥了模糊系统非线性、可解释性的特点;然后又利用神经网络的学习算法,实现了对模糊控制器的参数调整,使控制器具有了适应时变、不确定系统的自学习和自组织能力。针对非线性、时变系统,将此控制器与传统PID控制器对比进行了仿真研究,并应用于啤酒发酵领域,其结果表明,该控制器取得了令人满意的效果。 展开更多
关键词 t-s模型 模糊 神经网络 PID
在线阅读 下载PDF
基于T-S模型的神经网络在小陇山森林健康评价中的应用 被引量:3
16
作者 巨天珍 孟凡涛 +4 位作者 姚晶晶 王彦 任海峰 王蒙 张宋智 《广东农业科学》 CAS CSCD 北大核心 2012年第3期167-169,共3页
综合考虑T-S模型的精确性及快速性和BP神经网络的自适应能力,提出了基于T-S模型的模糊神经网络的森林健康评价模型,并利用MATLAB7.5编写程序。以小陇山油松林为例,进行计算,将结果呈送给多位小陇山林业专家,专家们对评价结果均满意。
关键词 t-s模糊模型 BP神经网络 森林健康评价 小陇山
在线阅读 下载PDF
基于扩展T-S模型的PSO神经网络在故障诊断中的应用 被引量:6
17
作者 王建芳 李伟华 《计算机科学》 CSCD 北大核心 2009年第9期224-226,245,共4页
针对现实故障现象具有模糊性和非线性的特点,提出了一种利用自适应扩展T-S(Takagi-Sugeno)模糊模型的PSO(Particle Swarm Optimization)算法和神经网络相结合的新型智能结构化算法来进行故障诊断的新方法。首先通过自适应的高斯函数来... 针对现实故障现象具有模糊性和非线性的特点,提出了一种利用自适应扩展T-S(Takagi-Sugeno)模糊模型的PSO(Particle Swarm Optimization)算法和神经网络相结合的新型智能结构化算法来进行故障诊断的新方法。首先通过自适应的高斯函数来更改基本T-S模糊模型中的隶属度函数,进而使用扩展的T-S模糊模型来调整PSO算法的参数。然后使用该PSO算法作为神经网络的学习训练算法来进行训练。最后将此算法用于齿轮箱实测故障诊断。诊断结果显示均方误差提高了0.1981%。通过不同模型的诊断结果比较,表明本方法便捷、高效,为解决故障诊断问题提供了一条新途径。 展开更多
关键词 模糊模型 离子群优化算法 神经网络 故障诊断
在线阅读 下载PDF
基于T-S模糊神经网络的湿法脱硫效率预测 被引量:18
18
作者 李斌 邓煜 +1 位作者 边禹铭 齐年哲 《热力发电》 CAS 北大核心 2016年第6期116-119,124,共5页
由于影响脱硫效率的因素较多,且相互之间均具有关联性,造成脱硫效率难以实时监测,且测量结果不精准。本文运用T-S模糊神经网络建立了脱硫效率的预测模型,基于某电厂DCS采集的湿法脱硫系统原始数据,在MATLAB平台上进行训练与检验,得到较... 由于影响脱硫效率的因素较多,且相互之间均具有关联性,造成脱硫效率难以实时监测,且测量结果不精准。本文运用T-S模糊神经网络建立了脱硫效率的预测模型,基于某电厂DCS采集的湿法脱硫系统原始数据,在MATLAB平台上进行训练与检验,得到较精准的脱硫效率预测模型。模型验证结果显示:采用T-S模糊神经网络模型预测脱硫效率,85%的样本点相对误差分布在-1.0%~0.5%之间,最大误差不超过1.5%,说明该模型的预测精度较高,能较好地满足工程实际的需求。 展开更多
关键词 湿法脱硫 脱硫效率 t-s模糊神经网络 预测模型 MATLAB
在线阅读 下载PDF
GA优化T-S模糊神经网络的干燥窑温湿度控制器设计 被引量:4
19
作者 姜滨 孙丽萍 +1 位作者 曹军 季仲致 《实验室研究与探索》 CAS 北大核心 2015年第11期54-59,共6页
为了准确控制木材干燥过程的温度和湿度,提高木材干燥质量,结合模糊控制、神经网络和遗传算法的优点,设计了一种遗传算法(GA)优化的T-S模糊神经网络温湿度控制器。该控制器利用模糊算法解除木材干燥窑内温度和湿度间的强耦合关系,采用... 为了准确控制木材干燥过程的温度和湿度,提高木材干燥质量,结合模糊控制、神经网络和遗传算法的优点,设计了一种遗传算法(GA)优化的T-S模糊神经网络温湿度控制器。该控制器利用模糊算法解除木材干燥窑内温度和湿度间的强耦合关系,采用神经网络的自学习和自适应能力实现整个非线性过程的模糊逻辑推理,并通过遗传算法对神经网络的参数进行优化与训练,提高系统的自学习和自适应能力。仿真实验结果表明,在木材干燥过程的温湿度控制上,GA优化的T-S型模糊神经网络控制器具有良好的控制效果,控制器响应速度快、超调小并且具有一定的鲁棒性。 展开更多
关键词 干燥过程 遗传算法 t-s模型 模糊神经网络控制器 干燥窑
在线阅读 下载PDF
基于T-S模糊神经网络的民勤地下水水质综合评价 被引量:10
20
作者 汪新波 粟晓玲 《干旱地区农业研究》 CSCD 北大核心 2013年第1期188-192,198,共6页
为了摸清石羊河流域民勤盆地近25年来的地下水水质变化状况,为当地水土资源合理开发和生态环境保护提供决策参考依据。将T-S模糊神经网络应用于民勤盆地1983、1990、2000年及2008年的地下水水质评价中,并与支持向量机(SVM)模型的评价结... 为了摸清石羊河流域民勤盆地近25年来的地下水水质变化状况,为当地水土资源合理开发和生态环境保护提供决策参考依据。将T-S模糊神经网络应用于民勤盆地1983、1990、2000年及2008年的地下水水质评价中,并与支持向量机(SVM)模型的评价结果进行检验比较。结果表明:民勤盆地地下水水质总体较差,并且盆地南部地区水质整体优于北部,除红崖山水库附近地区,80%以上区域水质为Ⅴ类水;141、147、156、168号井等在山区边缘的部分站点水质随时间有改善趋势。两种模型评价结果基本一致,但T-S模糊神经网络收敛速度更快,可以有效应用于地下水水质综合评价。 展开更多
关键词 t-s模糊神经网络 支持向量机 地下水水质评价 民勤盆地
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部