To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p...To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.展开更多
In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technolog...In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.展开更多
The problem of guaranteed cost fuzzy controller is studied for a class of nonlinear time-delay neutral sys-tems with norm-bounded uncertainty based on T-S model. The sufficient conditions are first derived for the exi...The problem of guaranteed cost fuzzy controller is studied for a class of nonlinear time-delay neutral sys-tems with norm-bounded uncertainty based on T-S model. The sufficient conditions are first derived for the existenceof guaranteed cost fuzzy controllers. These sufficient conditions are equivalent to a kind of linear matrix inequalities.Furthermore, a convex optimization problem with LMI constraints is formulated to design the optimal guaranteedcost controller.展开更多
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotica...In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.展开更多
This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is ...This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is utilized to represent the chaotic VDPL system. By using comparison method, a general asymptotical stability criterion by means of linear matrix inequality (LMI) is derived for the T-S fuzzy model of VDPL system with impulsive effects. The simulation results demonstrate the effectiveness of the proposed scheme.展开更多
This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then...This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T-S fuzzy system with time-delay and a discrete-time T-S fuzzy system is established. Based on the discrete-time T-S fuzzy system, it proves that the chaos in the discrete- time T-S fuzzy system satisfies the Li-Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example.展开更多
This paper concerns the robust non-fragile guaranteed cost control for nonlinear time delay discrete-time systems based on Takagi-Sugeno (T-S) model. The problem is to design a guaranteed cost state feedback control...This paper concerns the robust non-fragile guaranteed cost control for nonlinear time delay discrete-time systems based on Takagi-Sugeno (T-S) model. The problem is to design a guaranteed cost state feedback controller which can tolerate uncertainties from both models and gain variation. Sufficient conditions for the existence of such controller are given based on the linear matrix inequality (LMI) approach combined with Lyapunov method and inequality technique. A numerical example is given to illustrate the feasibility and effectiveness of our result.展开更多
Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes...Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method.展开更多
As a new computing mode,cloud computing can provide users with virtualized and scalable web services,which faced with serious security challenges,however.Access control is one of the most important measures to ensure ...As a new computing mode,cloud computing can provide users with virtualized and scalable web services,which faced with serious security challenges,however.Access control is one of the most important measures to ensure the security of cloud computing.But applying traditional access control model into the Cloud directly could not solve the uncertainty and vulnerability caused by the open conditions of cloud computing.In cloud computing environment,only when the security and reliability of both interaction parties are ensured,data security can be effectively guaranteed during interactions between users and the Cloud.Therefore,building a mutual trust relationship between users and cloud platform is the key to implement new kinds of access control method in cloud computing environment.Combining with Trust Management(TM),a mutual trust based access control(MTBAC) model is proposed in this paper.MTBAC model take both user's behavior trust and cloud services node's credibility into consideration.Trust relationships between users and cloud service nodes are established by mutual trust mechanism.Security problems of access control are solved by implementing MTBAC model into cloud computing environment.Simulation experiments show that MTBAC model can guarantee the interaction between users and cloud service nodes.展开更多
After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtuali...After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtualization. This study also compares Microsoft, Trend Micro, and the proposed unified cloud computing architecture to show that the proposed unified framework of the cloud computing service model is comprehensive and appropriate for the current complexities of businesses. The findings of this study can contribute to the knowledge for academics and practitioners to understand, assess, and analyze a cloud computing service application.展开更多
With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distributi...With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distribution network based on the combination weighting and cloud model of the improved Fuzzy Analytic Hierarchy-Entropy Weight Method(FAHP-EWM).First,we establish comprehensive evaluation indexes of a 5G+smart distribution network from five dimensions:reliable operation,economic operation,efficient interaction,technological intelligence,and green emission reduction.Second,by introducing the principle of variance minimization,we propose a combined weighting method based on the improved FAHP-EWM to calculate the comprehensive weight,so as to reduce the defects of subjective arbitrariness and promote objectivity.Finally,a comprehensive evaluation model of 5G+smart distribution network based on cloud model is proposed by considering the uncertainty of distribution network node information and equipment status information.The example analysis indicates that the overall operation of the 5G+smart distribution network project is decent,and the weight value calculated by the combined weighting method is more reasonable and accurate than that calculated by the single weighting method,which verifies the effectiveness and rationality of the proposed evaluation method.Moreover,the proposed evaluation method has a certain guiding role for the large-scale application of 5G communication technology in smart distribution networks.展开更多
A new method to evaluate fuzzily user's relevance on the basis of cloud models has been proposed. All factors of personalized information retrieval system are taken into account in this method. So using this method f...A new method to evaluate fuzzily user's relevance on the basis of cloud models has been proposed. All factors of personalized information retrieval system are taken into account in this method. So using this method for personalized information retrieval (PIR) system can efficiently judge multi-value relevance, such as quite relevant, comparatively relevant, commonly relevant, basically relevant and completely non-relevant, and realize a kind of transform of qualitative concepts and quantity and improve accuracy of relevance judgements in PIR system. Experimental data showed that the method is practical and valid. Evaluation results are more accurate and approach to the fact better.展开更多
With the increasing popularity of cloud computing, there is an increased de mand for cloud resources in cloud. It has be come even more urgent to find solutions to improve resource utilization. From the per spective o...With the increasing popularity of cloud computing, there is an increased de mand for cloud resources in cloud. It has be come even more urgent to find solutions to improve resource utilization. From the per spective of a cloud consumer, a cloud applica tion processes a large information flow in volving user actions that access resources, but little work has so far been devoted to research from the perspective of the interaction be tween the user and the cloud application. In this paper, we analyze the interaction in detail, and propose a general mathematical interac tion model to formulate the challenge pertain ing to storage resource allocation as an opti mization problem, focusing on minimizing both the user's cost and server's consumption. A potential response mechanism is then de signed based on the interaction model. Fur thermore, the proposed model is used to ex plore strategies when multiple users access the same file simultaneously. Additionally, an improved queuing system, namely M/ G~ oo queue with standby, is introduced. Finally, an evaluation is presented to verify the interac- tion model.展开更多
Query efficiency is bottleneck of XML data cube aggregate query. pXCube is a kind of XML data cube model based on path calculation. Join operations are avoided in this model, but the query efficiency of fact cell is b...Query efficiency is bottleneck of XML data cube aggregate query. pXCube is a kind of XML data cube model based on path calculation. Join operations are avoided in this model, but the query efficiency of fact cell is become a new bottleneck. This paper focuses on parallel technology of cloud computing to improve query efficiency of pXCube. Mixed partitioning strategy for fact and dimensions is applied in pXCube cloud model, and the same partitioned vector is adopted. Query parallel algorithm of pXCube cloud model is presented as well. Experiments show that the query cost of pXCube cloud model decreases with the increasing number of parallel nodes gradually. The query cost of fact fragments of each node are close to or even lower than join operations of dimensions, and the Speedup is with better linear. So the model is well suited for decision supported query.展开更多
The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller ...The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.展开更多
基金supported by National Natural Science Foundation of China(Grant No.62073256)the Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-342).
文摘To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.
文摘In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.
文摘The problem of guaranteed cost fuzzy controller is studied for a class of nonlinear time-delay neutral sys-tems with norm-bounded uncertainty based on T-S model. The sufficient conditions are first derived for the existenceof guaranteed cost fuzzy controllers. These sufficient conditions are equivalent to a kind of linear matrix inequalities.Furthermore, a convex optimization problem with LMI constraints is formulated to design the optimal guaranteedcost controller.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048,and 60774093)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)+1 种基金the Special Grant of Financial Support from China Postdoctoral Science Foundation (Grant No. 200902547)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200801451096)
文摘In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.
文摘This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is utilized to represent the chaotic VDPL system. By using comparison method, a general asymptotical stability criterion by means of linear matrix inequality (LMI) is derived for the T-S fuzzy model of VDPL system with impulsive effects. The simulation results demonstrate the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60904101,60972164 and 60904046)the Fundamental Research Funds for the Central Universities (Grant No. N090404009)the Research Foundation of Education Bureau of Liaoning Province,China (Grant No. 2009A544)
文摘This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T-S fuzzy system with time-delay and a discrete-time T-S fuzzy system is established. Based on the discrete-time T-S fuzzy system, it proves that the chaos in the discrete- time T-S fuzzy system satisfies the Li-Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example.
文摘This paper concerns the robust non-fragile guaranteed cost control for nonlinear time delay discrete-time systems based on Takagi-Sugeno (T-S) model. The problem is to design a guaranteed cost state feedback controller which can tolerate uncertainties from both models and gain variation. Sufficient conditions for the existence of such controller are given based on the linear matrix inequality (LMI) approach combined with Lyapunov method and inequality technique. A numerical example is given to illustrate the feasibility and effectiveness of our result.
文摘Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method.
基金ACKNOWLEDGEMENT This paper is supported by the Opening Project of State Key Laboratory for Novel Software Technology of Nanjing University, China (Grant No.KFKT2012B25) and National Science Foundation of China (Grant No.61303263).
文摘As a new computing mode,cloud computing can provide users with virtualized and scalable web services,which faced with serious security challenges,however.Access control is one of the most important measures to ensure the security of cloud computing.But applying traditional access control model into the Cloud directly could not solve the uncertainty and vulnerability caused by the open conditions of cloud computing.In cloud computing environment,only when the security and reliability of both interaction parties are ensured,data security can be effectively guaranteed during interactions between users and the Cloud.Therefore,building a mutual trust relationship between users and cloud platform is the key to implement new kinds of access control method in cloud computing environment.Combining with Trust Management(TM),a mutual trust based access control(MTBAC) model is proposed in this paper.MTBAC model take both user's behavior trust and cloud services node's credibility into consideration.Trust relationships between users and cloud service nodes are established by mutual trust mechanism.Security problems of access control are solved by implementing MTBAC model into cloud computing environment.Simulation experiments show that MTBAC model can guarantee the interaction between users and cloud service nodes.
文摘After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtualization. This study also compares Microsoft, Trend Micro, and the proposed unified cloud computing architecture to show that the proposed unified framework of the cloud computing service model is comprehensive and appropriate for the current complexities of businesses. The findings of this study can contribute to the knowledge for academics and practitioners to understand, assess, and analyze a cloud computing service application.
基金supported by the State Grid Corporation of China(KJ21-1-56).
文摘With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distribution network based on the combination weighting and cloud model of the improved Fuzzy Analytic Hierarchy-Entropy Weight Method(FAHP-EWM).First,we establish comprehensive evaluation indexes of a 5G+smart distribution network from five dimensions:reliable operation,economic operation,efficient interaction,technological intelligence,and green emission reduction.Second,by introducing the principle of variance minimization,we propose a combined weighting method based on the improved FAHP-EWM to calculate the comprehensive weight,so as to reduce the defects of subjective arbitrariness and promote objectivity.Finally,a comprehensive evaluation model of 5G+smart distribution network based on cloud model is proposed by considering the uncertainty of distribution network node information and equipment status information.The example analysis indicates that the overall operation of the 5G+smart distribution network project is decent,and the weight value calculated by the combined weighting method is more reasonable and accurate than that calculated by the single weighting method,which verifies the effectiveness and rationality of the proposed evaluation method.Moreover,the proposed evaluation method has a certain guiding role for the large-scale application of 5G communication technology in smart distribution networks.
文摘A new method to evaluate fuzzily user's relevance on the basis of cloud models has been proposed. All factors of personalized information retrieval system are taken into account in this method. So using this method for personalized information retrieval (PIR) system can efficiently judge multi-value relevance, such as quite relevant, comparatively relevant, commonly relevant, basically relevant and completely non-relevant, and realize a kind of transform of qualitative concepts and quantity and improve accuracy of relevance judgements in PIR system. Experimental data showed that the method is practical and valid. Evaluation results are more accurate and approach to the fact better.
基金supported in part by the National Natural Science Foundation of China under Grant No. 61271199the Fundamental Research Funds in Beijing Jiaotong University under Grant No. W11JB00630
文摘With the increasing popularity of cloud computing, there is an increased de mand for cloud resources in cloud. It has be come even more urgent to find solutions to improve resource utilization. From the per spective of a cloud consumer, a cloud applica tion processes a large information flow in volving user actions that access resources, but little work has so far been devoted to research from the perspective of the interaction be tween the user and the cloud application. In this paper, we analyze the interaction in detail, and propose a general mathematical interac tion model to formulate the challenge pertain ing to storage resource allocation as an opti mization problem, focusing on minimizing both the user's cost and server's consumption. A potential response mechanism is then de signed based on the interaction model. Fur thermore, the proposed model is used to ex plore strategies when multiple users access the same file simultaneously. Additionally, an improved queuing system, namely M/ G~ oo queue with standby, is introduced. Finally, an evaluation is presented to verify the interac- tion model.
基金supported by National Natural Science Foundation of China under Grant No. 61072091
文摘Query efficiency is bottleneck of XML data cube aggregate query. pXCube is a kind of XML data cube model based on path calculation. Join operations are avoided in this model, but the query efficiency of fact cell is become a new bottleneck. This paper focuses on parallel technology of cloud computing to improve query efficiency of pXCube. Mixed partitioning strategy for fact and dimensions is applied in pXCube cloud model, and the same partitioned vector is adopted. Query parallel algorithm of pXCube cloud model is presented as well. Experiments show that the query cost of pXCube cloud model decreases with the increasing number of parallel nodes gradually. The query cost of fact fragments of each node are close to or even lower than join operations of dimensions, and the Speedup is with better linear. So the model is well suited for decision supported query.
基金Supported by the National Natural Science Foundation of China(60874084)the Academy of Finland(135225,127299)
文摘The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.