Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evo...Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.展开更多
The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate per...The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode.展开更多
Lithium-sulfur(Li-S)batteries have been recognized as one of the most promising candidates for nextgeneration portable electronic devices,owing to their extremely high energy density and low cost.However,the dissoluti...Lithium-sulfur(Li-S)batteries have been recognized as one of the most promising candidates for nextgeneration portable electronic devices,owing to their extremely high energy density and low cost.However,the dissolution of lithium polysulfides(LiPSs)and consequent"shuttle effect"seriously hinder the practical deployment of Li-S batteries.Herein,multi-metal oxide nanorods named attapulgite are proposed as multifunctional ionic sieve to immobilize LiPSs and further promote the regulation of LiPSs.Attapulgite,consisting of Al,Mg,Fe,Si and O ions,possesses more polar sites to immobilize LiPSs in comparison with single metal oxides.In addition,the catalytic nature(Fe ions)of attapulgite avails the LiPSs conversion reaction,which is further confirmed by the linear sweep voltammetry and electrochemical impedance spectroscopy.Benefited from the synergistic effect of multi-metal oxide and conductive carbon,the Li-S battery with the modified separator delivers remarkable discharge capacities of 1059.4 mAh g-1 and 792.5 mAh g-1 for the first and 200th cycle at 0.5 C,respectively.The work presents an effective way to improve the electrochemical performance of Li-S batteries by employing attapulgite nanorods assisted separator surface engineering.展开更多
Photocatalytic conversion of CO_(2)into solar fuels provides a bright route for the green and sustainable development of human society.However,the realization of efficient photocatalytic CO_(2)reduction reaction(CO_(2...Photocatalytic conversion of CO_(2)into solar fuels provides a bright route for the green and sustainable development of human society.However,the realization of efficient photocatalytic CO_(2)reduction reaction(CO_(2)RR)is still challenging owing to the sluggish kinetics or unfavorable thermodynamics for basic chemical processes of CO_(2)RR,such as adsorption,activation,conversion and product desorption.To overcome these shortcomings,recent works have demonstrated that surface engineering of semiconductors,such as introducing surface vacancy,surface doping,and cocatalyst loading,serves as effective or promising strategies for improved photocatalytic CO_(2)RR with high activity and selectivity.The essential reason lies in the activation and reaction pathways can be optimized and regulated through the reconstruction of surface atomic and electronic structures.Herein,in this review,we focus on recent research advances about rational design of semiconductor surface for photocatalytic CO_(2)RR.The surface engineering strategies for improved CO_(2)adsorption,activation,and product selectivity will be reviewed.In addition,theoretical calculations along with in situ characterization techniques will be in the spotlight to clarify the kinetics and thermodynamics of the reaction process.The aim of this review is to provide deep understanding and rational guidance on the design of semiconductors for photocatalytic CO_(2)RR.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides a promising way to convert CO_(2)to chemicals.The multicarbon(C_(2+))products,especially ethylene,are of great interest due to their versatile indust...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides a promising way to convert CO_(2)to chemicals.The multicarbon(C_(2+))products,especially ethylene,are of great interest due to their versatile industrial applications.However,selectively reducing CO_(2)to ethylene is still challenging as the additional energy required for the C–C coupling step results in large overpotential and many competing products.Nonetheless,mechanistic understanding of the key steps and preferred reaction pathways/conditions,as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO_(2)RR.In this review,we first illustrate the key steps for CO_(2)RR to ethylene(e.g.,CO_(2)adsorption/activation,formation of~*CO intermediate,C–C coupling step),offering mechanistic understanding of CO_(2)RR conversion to ethylene.Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products(C_1 and other C_(2+)products)are investigated,guiding the further design and development of preferred conditions for ethylene generation.Engineering strategies of Cu-based catalysts for CO_(2)RR-ethylene are further summarized,and the correlations of reaction mechanism/pathways,engineering strategies and selectivity are elaborated.Finally,major challenges and perspectives in the research area of CO_(2)RR are proposed for future development and practical applications.展开更多
Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes of...Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes often declines because of capacity fading during cycling. This decline is primarily attributed to anisotropic lattice strain and oxygen release from cathode surfaces. Given notable structural transformations, complex redox reactions, and detrimental interface side reactions in LRMOs, the development of a single modification approach that addresses bulk and surface issues is challenging. Therefore,this study introduces a surface double-coupling engineering strategy that mitigates bulk strain and reduces surface side reactions. The internal spinel-like phase coating layer, featuring threedimensional(3D) lithium-ion diffusion channels, effectively blocks oxygen release from the cathode surface and mitigates lattice strain. In addition, the external Li_(3)PO_(4) coating layer, noted for its superior corrosion resistance, enhances the interfacial lithium transport and inhibits the dissolution of surface transition metals. Notably, the spinel phase, as excellent interlayer, securely anchors Li_(3)PO_(4) to the bulk lattice and suppresses oxygen release from lattices. Consequently, these modifications considerably boost structural stability and durability, achieving an impressive capacity retention of 83.4% and a minimal voltage decay of 1.49 m V per cycle after 150 cycles at 1 C. These findings provide crucial mechanistic insights into the role of surface modifications and guide the development of high-capacity cathodes with enhanced cyclability.展开更多
To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surfa...To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed.展开更多
Although molybdenum disulfide (MoS_(2))-based materials are generally known as active electrocatalysts for the hydrogen evolution reaction (HER), the inert performance for the oxygen evolution reaction (OER) seriously...Although molybdenum disulfide (MoS_(2))-based materials are generally known as active electrocatalysts for the hydrogen evolution reaction (HER), the inert performance for the oxygen evolution reaction (OER) seriously limits their wide applications in alkaline electrolyzers due to there exists too strong metal-sulfur (M−S) bond in MoS_(2). Herein, by means of surface reorganization engineering of bimetal Al, Co-doped MoS_(2) (devoted as AlCo_(3)-MoS_(2)) through in situ substituting partial oxidation, we successfully significantly activate the OER activity of MoS_(2), which affords a considerably low overpotential of 323 mV at −30 mA cm^(−2), far lower than those of MoS_(2), Al-MoS_(2) and Co-MoS_(2) catalysts. Essentially, the AlCo_(3)-MoS_(2) substrate produces lots of M−O (M=Al, Co and Mo) species with oxygen vacancies, which trigger the surface self-reconstruction of pre-catalysts and simultaneously boost the electrocatalytic OER activity. Moreover, benefiting from the moderate M−O species formed on the surface, the redistribution of surface electron states is induced, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and awakening the OER activity of MoS_(2).展开更多
Electrocatalysts are one of the essential components for the devices of high-efficiency green energy storage and conversion,such as metal-air cells,fuel cells,and water electrolysis systems.While catalysts made from n...Electrocatalysts are one of the essential components for the devices of high-efficiency green energy storage and conversion,such as metal-air cells,fuel cells,and water electrolysis systems.While catalysts made from noble metals possess high catalytic performance in both oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),their scarcity and expensiveness significantly limit large-scale applications.In this regard,metal-free/non-noble metal carbon-based catalysts have become competitive alternatives to replace catalysts made of noble metals.Nevertheless,low catalytic ORR/OER performance is the challenge of carbon-based catalysts for the commercial applications of metal-air batteries.To solve the problem of poor catalytic performance,two strategies have been proposed:(1)controlling the microstructure of the catalysts to expose more active sites as the channels of rapid mass and electron transfer;and(2)reducing the reaction energy barrier by optimizing the electronic structures of the catalysts via surface engineering.Here,we review different types of bifunctional ORR/OER electrocatalysts with the activated surface sites.We focus on how the challenge can be overcome with different methods of material synthesis,structural and surface characterization,performance validation/optimization,to outline the principles of surface modifications behind catalyst designs.In particular,we provide critical analysis in the challenges that we are facing in structural design and surface engineering of bifunctional ORR/OER catalysts and indicate the possible solution for these problems,providing the society with clearer ideas on the practical prospects of noble-metal-free electrocatalysts for their future applications.展开更多
Semiconductor colloidal nanocrystals(NCs)have size-and shape-dependent optoelectronic properties due to the quantum confinement effect,and are considered to be promising optoelectronic materials.Among them,Ⅱ-Ⅵ(CdSe,...Semiconductor colloidal nanocrystals(NCs)have size-and shape-dependent optoelectronic properties due to the quantum confinement effect,and are considered to be promising optoelectronic materials.Among them,Ⅱ-Ⅵ(CdSe,CdS,CdTe,etc.)andⅣ-Ⅵ(PbSe,PbTe,PbS,etc.)have been widely studied as representative colloidal NCs.However,the surfactant used in its synthesis progress results in the NCs surface covered by an insulating shell,which greatly affects the exciton separation and carrier transport of colloidal NCs-based photovoltaic devices.Therefore,how to design high-efficiency optoelectronic devices by improving the transport performance of carriers has been a great challenge.The key issues in the research ofⅡ-Ⅵ(CdSe,CdS,CdTe,etc.)andⅣ-Ⅵ(PbSe,PbTe,PbS,etc.)colloidal NCs were summarized,including synthesis strategy,morphology/size adjustment,surface ligand design,improvement of conductivity and their optoelectronic properties.The influence of surface ligands on the stability and dispersion of NCs was firstly introduced,and then strategies of improving electrical conductivity of NCs were discussed,such as ligands exchange,doping,self-assembly and plasmons,which provided a good foundation for the subsequent preparation of optoelectronic devices.The future development direction of NCs optoelectronic devices is expounded from the aspects of materials composition,comprehensive preparation and flexible processing of colloidal NCs.展开更多
Aiming at the actual demands of petroleum exploration and development,this paper describes the research progress and application of artificial intelligence(AI)in petroleum exploration and development,and discusses the...Aiming at the actual demands of petroleum exploration and development,this paper describes the research progress and application of artificial intelligence(AI)in petroleum exploration and development,and discusses the applications and development directions of AI in the future.Machine learning has been preliminarily applied in lithology identification,logging curve reconstruction,reservoir parameter estimation,and other logging processing and interpretation,exhibiting great potential.Computer vision is effective in picking of seismic first breaks,fault identification,and other seismic processing and interpretation.Deep learning and optimization technology have been applied to reservoir engineering,and realized the real-time optimization of waterflooding development and prediction of oil and gas production.The application of data mining in drilling,completion,and surface facility engineering etc.has resulted in intelligent equipment and integrated software.The potential development directions of artificial intelligence in petroleum exploration and development are intelligent production equipment,automatic processing and interpretation,and professional software platform.The highlights of development will be digital basins,fast intelligent imaging logging tools,intelligent seismic nodal acquisition systems,intelligent rotary-steering drilling,intelligent fracturing technology and equipment,real-time monitoring and control of zonal injection and production.展开更多
Molybdenum disulfide(MoS_(2))-based materials as the non-noble metal catalysts have displayed the potential capability to drive electrocatalytic hydrogen evolution reaction(HER)for green hydrogen production along with...Molybdenum disulfide(MoS_(2))-based materials as the non-noble metal catalysts have displayed the potential capability to drive electrocatalytic hydrogen evolution reaction(HER)for green hydrogen production along with their intrinsic activity,tunable electronic properties,low cost,and abundance reserves,which have attracted intensive attention as alternatives to the low-abundance and high-cost platinum-based catalysts.However,their insufficient catalytic HER activities and stability are the major challenges for them to become practically applicable.Hereby,the MoS_(2)-based electrocatalysts for HER are comprehensively reviewed to explain the fundamental science behind the manipulations of the crystal structure,microstructure,surface,and interface of MoS_(2) in order to enhance its catalytic performance through changing the electrical conductivity,the number of active sites,surface wettability,and the Gibbs free energy for hydrogen adsorption(ΔGH).Recent studies in surface/interface engineering,such as phase engineering,defect engineering,morphology design,and heterostructure construction,are analyzed to reveal the state-of-the-art strategies for designing and preparing the cost-effective and highperformance MoS_(2)-based catalysts through optimizing the charge transfer,surface-active sites,ΔGH,and surface hydrophilicity.Lastly,the perspectives,challenges,and future research directions of HER electrocatalysis are also given to facilitate the further research and development of HER catalysts.展开更多
Rechargeable aqueous Zn-MoO_(x)batteries are promising energy storage devices with high theoretical specific capacity and low cost.However,MoO_(3)cathodes suffer drastic capacity decay during the initial discharging/c...Rechargeable aqueous Zn-MoO_(x)batteries are promising energy storage devices with high theoretical specific capacity and low cost.However,MoO_(3)cathodes suffer drastic capacity decay during the initial discharging/charging process in conventional electrolytes,resulting in a short cycle life and challenging the development of Zn-MoO_(x)batteries.Here we comprehensively investigate the dissolution mechanism of MoO_(3)cathodes and innovatively introduce a polymer to inhibit the irreversible processes.Our findings reveal that this capacity decay originates from the irreversible Zn^(2+)/H^(+)co-intercalation/extraction process in aqueous electrolytes.Even worse,during Zn^(2+)intercalation,the formed Zn_(x)MoO_(3-x)intermediate phase with lower valence states(Mo^(5+)/Mo^(4+))experiences severe dissolution in aqueous environments.To address these challenges,we developed a first instance of coating a polyaniline(PANI)shell around the MoO_(3)nanorod effectively inhibiting these irreversible processes and protecting structural integrity during long-term cycling.Detailed structural analysis and theoretical calculations indicate that=N-groups in PANI@MoO_(3-x)simultaneously weaken H+adsorption and enhance Zn^(2+)adsorption,which endowed the PANI@MoO_(3-x)cathode with reversible Zn^(2+)/H^(+)intercalation/extraction.Consequently,the obtained PANI@MoO_(3-x)cathode delivers an excellent discharge capacity of 316.86 mA h g^(-1)at 0.1 A g^(-1)and prolonged cycling stability of 75.49%capacity retention after 1000 cycles at 5 A g^(-1).This work addresses the critical issues associated with MoO_(3)cathodes and significantly advances the understanding of competitive multi-ion energy storage mechanisms in aqueous Zn-MoO_(3)batteries.展开更多
基金National Natural Science Foundation of China(Grant No.22005318,22379152)Western Young Scholars Foundations of Chinese Academy of Sciences+4 种基金Lanzhou Youth Science and Technology Talent Innovation Project(Grant No.2023-NQ-86,No.2023-QN-96)Lanzhou Chengguan District Science and Technology Plan Project(Grant No.2023-rc-4,2022-rc-4)Collaborative Innovation Alliance Fund for Young Science and Technology Worker(Grant No.HZJJ23-7)National Nature Science Foundations of Gansu Province(Grant No.21JR11RA020)Fundamental Research Funds for the Central Universities(Grant No.31920220073,31920230128)。
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.
基金financially supported by the Australian Research Council(ARC) through the Future Fellowship(FT180100705)the financial support from China Scholarship Council+3 种基金the support from UTS-HUST Key Technology Partner Seed Fundthe support from Open Project of State Key Laboratory of Advanced Special Steel,the Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-04)the Science and Technology Commission of Shanghai Municipality(22010500400)“Joint International Laboratory on Environmental and Energy Frontier Materials”and“Innovation Research Team of High–Level Local Universities in Shanghai”in Shanghai University。
文摘The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode.
基金supported by the National Natural Science Foundation of China(Nos.51861165101,51822706,51777200)Beijing Natural Science Foundation(No.JQ19012)DNL Cooperation Fund,CAS(DNL201912)。
文摘Lithium-sulfur(Li-S)batteries have been recognized as one of the most promising candidates for nextgeneration portable electronic devices,owing to their extremely high energy density and low cost.However,the dissolution of lithium polysulfides(LiPSs)and consequent"shuttle effect"seriously hinder the practical deployment of Li-S batteries.Herein,multi-metal oxide nanorods named attapulgite are proposed as multifunctional ionic sieve to immobilize LiPSs and further promote the regulation of LiPSs.Attapulgite,consisting of Al,Mg,Fe,Si and O ions,possesses more polar sites to immobilize LiPSs in comparison with single metal oxides.In addition,the catalytic nature(Fe ions)of attapulgite avails the LiPSs conversion reaction,which is further confirmed by the linear sweep voltammetry and electrochemical impedance spectroscopy.Benefited from the synergistic effect of multi-metal oxide and conductive carbon,the Li-S battery with the modified separator delivers remarkable discharge capacities of 1059.4 mAh g-1 and 792.5 mAh g-1 for the first and 200th cycle at 0.5 C,respectively.The work presents an effective way to improve the electrochemical performance of Li-S batteries by employing attapulgite nanorods assisted separator surface engineering.
基金financially supported by JSPS KAKENHI(JP18H02065)Photo-excitonic Project in Hokkaido University,National Natural Science Foundation of China(21633004,22002060,and 51872138)+4 种基金Natural Science Foundation of Jiangsu Province(BK20181380)Qing Lan Project,Six Talent Peaks Project in Jiangsu Province(XCL-029)Priority Academic Program Development of the Jiangsu Higher Education Institutions(PAPD)the support provided by the China Scholarships Council(202008320109)China Postdoctoral Science Foundation(2020M681564)。
文摘Photocatalytic conversion of CO_(2)into solar fuels provides a bright route for the green and sustainable development of human society.However,the realization of efficient photocatalytic CO_(2)reduction reaction(CO_(2)RR)is still challenging owing to the sluggish kinetics or unfavorable thermodynamics for basic chemical processes of CO_(2)RR,such as adsorption,activation,conversion and product desorption.To overcome these shortcomings,recent works have demonstrated that surface engineering of semiconductors,such as introducing surface vacancy,surface doping,and cocatalyst loading,serves as effective or promising strategies for improved photocatalytic CO_(2)RR with high activity and selectivity.The essential reason lies in the activation and reaction pathways can be optimized and regulated through the reconstruction of surface atomic and electronic structures.Herein,in this review,we focus on recent research advances about rational design of semiconductor surface for photocatalytic CO_(2)RR.The surface engineering strategies for improved CO_(2)adsorption,activation,and product selectivity will be reviewed.In addition,theoretical calculations along with in situ characterization techniques will be in the spotlight to clarify the kinetics and thermodynamics of the reaction process.The aim of this review is to provide deep understanding and rational guidance on the design of semiconductors for photocatalytic CO_(2)RR.
基金financially supported via Australian Research Council(FT180100705)the support by the National Natural Science Foundation of China(22209103)+3 种基金the support from UTS Chancellor's Research Fellowshipsthe support from Open Project of State Key Laboratory of Advanced Special Steel,the Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-**)Joint International Laboratory on Environmental and Energy Frontier MaterialsInnovation Research Team of High-Level Local Universities in Shanghai。
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides a promising way to convert CO_(2)to chemicals.The multicarbon(C_(2+))products,especially ethylene,are of great interest due to their versatile industrial applications.However,selectively reducing CO_(2)to ethylene is still challenging as the additional energy required for the C–C coupling step results in large overpotential and many competing products.Nonetheless,mechanistic understanding of the key steps and preferred reaction pathways/conditions,as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO_(2)RR.In this review,we first illustrate the key steps for CO_(2)RR to ethylene(e.g.,CO_(2)adsorption/activation,formation of~*CO intermediate,C–C coupling step),offering mechanistic understanding of CO_(2)RR conversion to ethylene.Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products(C_1 and other C_(2+)products)are investigated,guiding the further design and development of preferred conditions for ethylene generation.Engineering strategies of Cu-based catalysts for CO_(2)RR-ethylene are further summarized,and the correlations of reaction mechanism/pathways,engineering strategies and selectivity are elaborated.Finally,major challenges and perspectives in the research area of CO_(2)RR are proposed for future development and practical applications.
基金National Natural Science Foundation of China (22179008, 21875022)Yibin ‘Jie Bang Gua Shuai’ (2022JB004)+3 种基金support from the Beijing Nova Program (20230484241)support from the Postdoctoral Fellowship Program of CPSF (GZB20230931)Special Support of the Chongqing Postdoctoral Research Project (2023CQBSHTB2041)Initial Energy Science & Technology Co., Ltd (IEST)。
文摘Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes often declines because of capacity fading during cycling. This decline is primarily attributed to anisotropic lattice strain and oxygen release from cathode surfaces. Given notable structural transformations, complex redox reactions, and detrimental interface side reactions in LRMOs, the development of a single modification approach that addresses bulk and surface issues is challenging. Therefore,this study introduces a surface double-coupling engineering strategy that mitigates bulk strain and reduces surface side reactions. The internal spinel-like phase coating layer, featuring threedimensional(3D) lithium-ion diffusion channels, effectively blocks oxygen release from the cathode surface and mitigates lattice strain. In addition, the external Li_(3)PO_(4) coating layer, noted for its superior corrosion resistance, enhances the interfacial lithium transport and inhibits the dissolution of surface transition metals. Notably, the spinel phase, as excellent interlayer, securely anchors Li_(3)PO_(4) to the bulk lattice and suppresses oxygen release from lattices. Consequently, these modifications considerably boost structural stability and durability, achieving an impressive capacity retention of 83.4% and a minimal voltage decay of 1.49 m V per cycle after 150 cycles at 1 C. These findings provide crucial mechanistic insights into the role of surface modifications and guide the development of high-capacity cathodes with enhanced cyclability.
基金supported by the Natural Science Foundation of Shandong Province(ZR2019PB013)the Natural Science Foundation of Tianjin(19JCZDJC37700)the National Natural Science Foundation of China(21421001 and 21875118)。
文摘To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed.
基金This work was supported by the NSFC(21501096,22075223)Natural Science Foundation of Jiangsu(BK20150086,BK20201120)+1 种基金the Foundation of the Jiangsu Education Committee(15KJB150020)the Six Talent Peaks Project in Jiangsu Province(JY-087)and the Innovation Project of Jiangsu Province.
文摘Although molybdenum disulfide (MoS_(2))-based materials are generally known as active electrocatalysts for the hydrogen evolution reaction (HER), the inert performance for the oxygen evolution reaction (OER) seriously limits their wide applications in alkaline electrolyzers due to there exists too strong metal-sulfur (M−S) bond in MoS_(2). Herein, by means of surface reorganization engineering of bimetal Al, Co-doped MoS_(2) (devoted as AlCo_(3)-MoS_(2)) through in situ substituting partial oxidation, we successfully significantly activate the OER activity of MoS_(2), which affords a considerably low overpotential of 323 mV at −30 mA cm^(−2), far lower than those of MoS_(2), Al-MoS_(2) and Co-MoS_(2) catalysts. Essentially, the AlCo_(3)-MoS_(2) substrate produces lots of M−O (M=Al, Co and Mo) species with oxygen vacancies, which trigger the surface self-reconstruction of pre-catalysts and simultaneously boost the electrocatalytic OER activity. Moreover, benefiting from the moderate M−O species formed on the surface, the redistribution of surface electron states is induced, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and awakening the OER activity of MoS_(2).
基金financially supported by the National Natural Science Foundation of China(51572166)the project funded by China Postdoctoral Science Foundation(2021 M702073)support from the Program for Professors with Special Appointments(Eastern Scholar:TP2014041)at Shanghai Institutions of Higher Learning。
文摘Electrocatalysts are one of the essential components for the devices of high-efficiency green energy storage and conversion,such as metal-air cells,fuel cells,and water electrolysis systems.While catalysts made from noble metals possess high catalytic performance in both oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),their scarcity and expensiveness significantly limit large-scale applications.In this regard,metal-free/non-noble metal carbon-based catalysts have become competitive alternatives to replace catalysts made of noble metals.Nevertheless,low catalytic ORR/OER performance is the challenge of carbon-based catalysts for the commercial applications of metal-air batteries.To solve the problem of poor catalytic performance,two strategies have been proposed:(1)controlling the microstructure of the catalysts to expose more active sites as the channels of rapid mass and electron transfer;and(2)reducing the reaction energy barrier by optimizing the electronic structures of the catalysts via surface engineering.Here,we review different types of bifunctional ORR/OER electrocatalysts with the activated surface sites.We focus on how the challenge can be overcome with different methods of material synthesis,structural and surface characterization,performance validation/optimization,to outline the principles of surface modifications behind catalyst designs.In particular,we provide critical analysis in the challenges that we are facing in structural design and surface engineering of bifunctional ORR/OER catalysts and indicate the possible solution for these problems,providing the society with clearer ideas on the practical prospects of noble-metal-free electrocatalysts for their future applications.
基金supported by the National Natural Science Foundation of China(No.51976081)。
文摘Semiconductor colloidal nanocrystals(NCs)have size-and shape-dependent optoelectronic properties due to the quantum confinement effect,and are considered to be promising optoelectronic materials.Among them,Ⅱ-Ⅵ(CdSe,CdS,CdTe,etc.)andⅣ-Ⅵ(PbSe,PbTe,PbS,etc.)have been widely studied as representative colloidal NCs.However,the surfactant used in its synthesis progress results in the NCs surface covered by an insulating shell,which greatly affects the exciton separation and carrier transport of colloidal NCs-based photovoltaic devices.Therefore,how to design high-efficiency optoelectronic devices by improving the transport performance of carriers has been a great challenge.The key issues in the research ofⅡ-Ⅵ(CdSe,CdS,CdTe,etc.)andⅣ-Ⅵ(PbSe,PbTe,PbS,etc.)colloidal NCs were summarized,including synthesis strategy,morphology/size adjustment,surface ligand design,improvement of conductivity and their optoelectronic properties.The influence of surface ligands on the stability and dispersion of NCs was firstly introduced,and then strategies of improving electrical conductivity of NCs were discussed,such as ligands exchange,doping,self-assembly and plasmons,which provided a good foundation for the subsequent preparation of optoelectronic devices.The future development direction of NCs optoelectronic devices is expounded from the aspects of materials composition,comprehensive preparation and flexible processing of colloidal NCs.
基金Supported by the National Natural Science Foundation of China (72088101)。
文摘Aiming at the actual demands of petroleum exploration and development,this paper describes the research progress and application of artificial intelligence(AI)in petroleum exploration and development,and discusses the applications and development directions of AI in the future.Machine learning has been preliminarily applied in lithology identification,logging curve reconstruction,reservoir parameter estimation,and other logging processing and interpretation,exhibiting great potential.Computer vision is effective in picking of seismic first breaks,fault identification,and other seismic processing and interpretation.Deep learning and optimization technology have been applied to reservoir engineering,and realized the real-time optimization of waterflooding development and prediction of oil and gas production.The application of data mining in drilling,completion,and surface facility engineering etc.has resulted in intelligent equipment and integrated software.The potential development directions of artificial intelligence in petroleum exploration and development are intelligent production equipment,automatic processing and interpretation,and professional software platform.The highlights of development will be digital basins,fast intelligent imaging logging tools,intelligent seismic nodal acquisition systems,intelligent rotary-steering drilling,intelligent fracturing technology and equipment,real-time monitoring and control of zonal injection and production.
基金financially supported by the National Natural Science Foundation of China(Grant No.51572166)the China Postdoctoral Science Foundation(Grant No.2021M702073)+1 种基金the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province(Grant No.202002AB080001-1)support from the Program for Professors with Special Appointments(Eastern Scholar:TP2014041)at Shanghai Institutions of Higher Learning。
文摘Molybdenum disulfide(MoS_(2))-based materials as the non-noble metal catalysts have displayed the potential capability to drive electrocatalytic hydrogen evolution reaction(HER)for green hydrogen production along with their intrinsic activity,tunable electronic properties,low cost,and abundance reserves,which have attracted intensive attention as alternatives to the low-abundance and high-cost platinum-based catalysts.However,their insufficient catalytic HER activities and stability are the major challenges for them to become practically applicable.Hereby,the MoS_(2)-based electrocatalysts for HER are comprehensively reviewed to explain the fundamental science behind the manipulations of the crystal structure,microstructure,surface,and interface of MoS_(2) in order to enhance its catalytic performance through changing the electrical conductivity,the number of active sites,surface wettability,and the Gibbs free energy for hydrogen adsorption(ΔGH).Recent studies in surface/interface engineering,such as phase engineering,defect engineering,morphology design,and heterostructure construction,are analyzed to reveal the state-of-the-art strategies for designing and preparing the cost-effective and highperformance MoS_(2)-based catalysts through optimizing the charge transfer,surface-active sites,ΔGH,and surface hydrophilicity.Lastly,the perspectives,challenges,and future research directions of HER electrocatalysis are also given to facilitate the further research and development of HER catalysts.
基金supported by National Natural Science Foundation of China(22209064,52071171,and 52202248)the Fundamental Research Funds for Public Universities in Liaoning(LJKLJ202434)+6 种基金the Australian Research Council(ARC)through Future Fellowship(FT210100298)Discovery Project(DP220100603)Linkage Project(LP210200504,LP220100088,LP230200897)Industrial Transformation Research Hub(IH240100009)schemesthe Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)the Australian Renewable Energy Agency(ARENA)as part of ARENA’s Transformative Research Accelerating Commercialisation Program(TM021)European Commission’s Australia-Spain Network for Innovation and Research Excellence(AuSpire)。
文摘Rechargeable aqueous Zn-MoO_(x)batteries are promising energy storage devices with high theoretical specific capacity and low cost.However,MoO_(3)cathodes suffer drastic capacity decay during the initial discharging/charging process in conventional electrolytes,resulting in a short cycle life and challenging the development of Zn-MoO_(x)batteries.Here we comprehensively investigate the dissolution mechanism of MoO_(3)cathodes and innovatively introduce a polymer to inhibit the irreversible processes.Our findings reveal that this capacity decay originates from the irreversible Zn^(2+)/H^(+)co-intercalation/extraction process in aqueous electrolytes.Even worse,during Zn^(2+)intercalation,the formed Zn_(x)MoO_(3-x)intermediate phase with lower valence states(Mo^(5+)/Mo^(4+))experiences severe dissolution in aqueous environments.To address these challenges,we developed a first instance of coating a polyaniline(PANI)shell around the MoO_(3)nanorod effectively inhibiting these irreversible processes and protecting structural integrity during long-term cycling.Detailed structural analysis and theoretical calculations indicate that=N-groups in PANI@MoO_(3-x)simultaneously weaken H+adsorption and enhance Zn^(2+)adsorption,which endowed the PANI@MoO_(3-x)cathode with reversible Zn^(2+)/H^(+)intercalation/extraction.Consequently,the obtained PANI@MoO_(3-x)cathode delivers an excellent discharge capacity of 316.86 mA h g^(-1)at 0.1 A g^(-1)and prolonged cycling stability of 75.49%capacity retention after 1000 cycles at 5 A g^(-1).This work addresses the critical issues associated with MoO_(3)cathodes and significantly advances the understanding of competitive multi-ion energy storage mechanisms in aqueous Zn-MoO_(3)batteries.