期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved Sobel algorithm for defect detection of rail surfaces with enhanced efficiency and accuracy 被引量:26
1
作者 石甜 孔建益 +2 位作者 王兴东 刘钊 郑国 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2867-2875,共9页
A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm... A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved. 展开更多
关键词 Sobel algorithm surface defect heavy rail experimental platform IDENTIFICATION
在线阅读 下载PDF
A density functional theory study of polarons on different TiO_(2) surfaces
2
作者 SHI Zhiqun GONG Xueqing 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第12期1877-1888,I0011-I0013,共15页
Polarons are widely considered to play a crucial role in the charge transport and photocatalytic performance of materials,but the mechanisms of their formation and the underlying driving factors remain a matter of con... Polarons are widely considered to play a crucial role in the charge transport and photocatalytic performance of materials,but the mechanisms of their formation and the underlying driving factors remain a matter of controversy.This study delves into the formation of polarons in different crystalline forms of TiO_(2) and their connection with the materials'structure.By employing density functional theory calculations with on-site Coulomb interaction correction(DFT+U),we provide a detailed analysis of the electronic polarization behavior in the anatase and rutile forms of TiO_(2).We focus on the polarization properties of defect-induced and photoexcited excess electrons on various TiO_(2) surfaces.The results reveal that the defect electrons can form small polarons on the anatase TiO_(2)(101)surface,while on the rutile TiO_(2)(110)surface,both small and large polarons(hybrid-state polarons)are formed.Photoexcited electrons are capable of forming both small and large polarons on the surfaces of both crystal types.The analysis indicates that the differences in polaron distribution are primarily determined by the intrinsic properties of the crystals;the structural and symmetry differences between anatase and rutile TiO_(2) lead to the distinct polaron behaviors.Further investigation suggests that the polarization behavior of defect electrons is also related to the arrangement of electron orbitals around the Ti atoms,while the polarization of photoexcited electrons is mainly facilitated by the lattice distortions.These findings elucidate the formation mechanisms of different types of polarons and may contribute to understanding the performance of TiO_(2)in different fields. 展开更多
关键词 POLARON surface defect PHOTOEXCITATION TiO_(2) density functional theory
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部