To accelerate the training of support vector domain description (SVDD), confidence support vector domain description (CSVDD) is proposed based on the observation that the description boundary is determined by a sm...To accelerate the training of support vector domain description (SVDD), confidence support vector domain description (CSVDD) is proposed based on the observation that the description boundary is determined by a small subset of training data called support vectors. Namely, the number of training samples in the userdefined sphere is calculated and taken as the confidence measure, according to which the training samples are ranked in ascending order. Those former ranked ones are selected as the boundary targets for the SVDD training. Simulations on UCI data demonstrate the effectiveness and superiority of CSVDD: the number of training targets and the training time are reduced without any loss of accuracy.展开更多
针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基...针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基于深度支持向量描述(deep support vector data description,Deep SVDD)和调制识别的AD方法。仿真及实验结果表明:相比于经典的单分类检测算法,该方法检测性能和实时性明显提升,且在非理想信道环境下表现鲁棒。该方法已在某型号项目原理样机上得到验证,具有很高应用价值。展开更多
在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数...在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数据集和人工样本集进行实验表明,改进后的I-SVDD算法比带野值的SVDD算法的AUC值平均提高12%以上;比AdaBoost算法在正类查全率上平均提高35%,精确度也提高了2%以上.I-SVDD算法在保证少数类样本高分类精度前提下,还有效提高了全样本的分类精度,更符合现实不平衡问题中对少数类样本的处理要求.展开更多
支持向量数据描述(support vector data description,SVDD)是一种具有单类数据描述能力的数据分类算法,因具有结构风险最小化的特性而受到广泛关注。SVDD的参数优化是影响其分类效果的关键问题,本文通过引入样本点的密度信息,提出了以...支持向量数据描述(support vector data description,SVDD)是一种具有单类数据描述能力的数据分类算法,因具有结构风险最小化的特性而受到广泛关注。SVDD的参数优化是影响其分类效果的关键问题,本文通过引入样本点的密度信息,提出了以界外密度最小化为目标的参数优化函数,避免了漏检率的计算问题,可充分利用训练数据的分布信息,提高数据描述能力,降低错分率。仿真实验和UCI标准数据库的对比验证表明,优化后的SVDD算法能够有效降低漏检率和错分率,提高算法性能。展开更多
支持向量数据描述(support vector data description,SVDD)常用于实现目标类样本充分、非目标类样本多样化的两类分类。在雷达目标识别应用中,SVDD分类性能随样本噪声增加迅速下降。为了解决这个问题,通过深入分析SVDD抗噪性能差的原因...支持向量数据描述(support vector data description,SVDD)常用于实现目标类样本充分、非目标类样本多样化的两类分类。在雷达目标识别应用中,SVDD分类性能随样本噪声增加迅速下降。为了解决这个问题,通过深入分析SVDD抗噪性能差的原因,提出了基于自适应SVDD的雷达目标分类方法。该方法利用接收机工作特性曲线建立信噪比与分类最优超球半径的关系模型,在目标分类过程中,针对不同信噪比自适应选择分类判决门限。仿真实验表明,相比于常规SVDD方法,自适应SVDD方法大大提高了低信噪比下目标分类性能。展开更多
为了提高一类支持向量数据描述(Support vector data description,SVDD)对未知样本的决策速度,本文从样本的核特征空间出发,利用核超球球心在原始样本特征空间中的原像,提出一种SVDD的快速决策方法(Fast decision approach of SVDD,FDA-...为了提高一类支持向量数据描述(Support vector data description,SVDD)对未知样本的决策速度,本文从样本的核特征空间出发,利用核超球球心在原始样本特征空间中的原像,提出一种SVDD的快速决策方法(Fast decision approach of SVDD,FDA-SVDD),使得SVDD的决策复杂度从O(n)降低到O(1).同时,对球心原像所在空间进行了分析,并在此基础上给出了两种原像逼近方法.多种真实数据集实验表明,FDA-SVDD方法在保证测试精度的同时,能快速实现对未知样本的决策.展开更多
基金supported by the National Natural Science Foundation of China(6057407560674108).
文摘To accelerate the training of support vector domain description (SVDD), confidence support vector domain description (CSVDD) is proposed based on the observation that the description boundary is determined by a small subset of training data called support vectors. Namely, the number of training samples in the userdefined sphere is calculated and taken as the confidence measure, according to which the training samples are ranked in ascending order. Those former ranked ones are selected as the boundary targets for the SVDD training. Simulations on UCI data demonstrate the effectiveness and superiority of CSVDD: the number of training targets and the training time are reduced without any loss of accuracy.
文摘针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基于深度支持向量描述(deep support vector data description,Deep SVDD)和调制识别的AD方法。仿真及实验结果表明:相比于经典的单分类检测算法,该方法检测性能和实时性明显提升,且在非理想信道环境下表现鲁棒。该方法已在某型号项目原理样机上得到验证,具有很高应用价值。
文摘在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数据集和人工样本集进行实验表明,改进后的I-SVDD算法比带野值的SVDD算法的AUC值平均提高12%以上;比AdaBoost算法在正类查全率上平均提高35%,精确度也提高了2%以上.I-SVDD算法在保证少数类样本高分类精度前提下,还有效提高了全样本的分类精度,更符合现实不平衡问题中对少数类样本的处理要求.
文摘支持向量数据描述(support vector data description,SVDD)是一种具有单类数据描述能力的数据分类算法,因具有结构风险最小化的特性而受到广泛关注。SVDD的参数优化是影响其分类效果的关键问题,本文通过引入样本点的密度信息,提出了以界外密度最小化为目标的参数优化函数,避免了漏检率的计算问题,可充分利用训练数据的分布信息,提高数据描述能力,降低错分率。仿真实验和UCI标准数据库的对比验证表明,优化后的SVDD算法能够有效降低漏检率和错分率,提高算法性能。
文摘支持向量数据描述(support vector data description,SVDD)常用于实现目标类样本充分、非目标类样本多样化的两类分类。在雷达目标识别应用中,SVDD分类性能随样本噪声增加迅速下降。为了解决这个问题,通过深入分析SVDD抗噪性能差的原因,提出了基于自适应SVDD的雷达目标分类方法。该方法利用接收机工作特性曲线建立信噪比与分类最优超球半径的关系模型,在目标分类过程中,针对不同信噪比自适应选择分类判决门限。仿真实验表明,相比于常规SVDD方法,自适应SVDD方法大大提高了低信噪比下目标分类性能。
文摘为了提高一类支持向量数据描述(Support vector data description,SVDD)对未知样本的决策速度,本文从样本的核特征空间出发,利用核超球球心在原始样本特征空间中的原像,提出一种SVDD的快速决策方法(Fast decision approach of SVDD,FDA-SVDD),使得SVDD的决策复杂度从O(n)降低到O(1).同时,对球心原像所在空间进行了分析,并在此基础上给出了两种原像逼近方法.多种真实数据集实验表明,FDA-SVDD方法在保证测试精度的同时,能快速实现对未知样本的决策.