A new parallel algorithm for corner detection on object contour is presented in the paper. In this algorithm whenever a point (pixel) is scanned, the k direction codes between the two sides of the point, which is on t...A new parallel algorithm for corner detection on object contour is presented in the paper. In this algorithm whenever a point (pixel) is scanned, the k direction codes between the two sides of the point, which is on the edge of an object, are obtained by k-step forward and backward boundary tracking. A comer is determined by the sum of the difference between the two weighted code chains. Note that the whole chain code sequence or boundary of an object is not necessary to be extracted at all in this algorithm, and the corners are obtained immediately once the image is scanned, furthermore, what humans perceive as corners can be detected and localized by this algorithm.展开更多
为实现不同光学模态信息优势互补,以助力电力设备故障检测与定位任务,该文采用可见光图像增强红外图像的纹理信息。针对现有红外-可见光图像配准技术难以精确对齐电力设备局部精细化结构的问题,首次提出自适应监督重训配准算法(adaptive...为实现不同光学模态信息优势互补,以助力电力设备故障检测与定位任务,该文采用可见光图像增强红外图像的纹理信息。针对现有红外-可见光图像配准技术难以精确对齐电力设备局部精细化结构的问题,首次提出自适应监督重训配准算法(adaptive registration algorithm with supervision and retraining,ARSR),主要包括双阶各向异性高斯方向导数机制(dual order anisotropic Gaussian directional derivative,Dual-AGDD)以及双视图匹配参数重训框架(double-view matching parameter retraining,DVMPR)。首先,提出Dual-AGDD完成特征点筛选与定向。1阶AGDD进行自适应电力设备局部细化角点检测,2阶AGDD构建高斯特征三角形确定特征点主方向,采用局部强度不变性方法构建特征描述子。接着,提出DVMPR框架对图像透视尺度与视野旋转进行制约校正。最后,基于3σ原则改进支持向量回归,对误匹配点进行剔除,完成异源数据配准。试验结果显示,对不同旋转和尺度差异、不同环境的电力设备异源图像进行配准时,该文算法的平均定位误差为2.65,平均配准精确率为98.57%,具有较强的图像旋转、尺度不变性和环境鲁棒性,显著优于现有CAO-C2F、SuperPoint-SuperGlue等配准算法,可提高电力设备精细化结构异源图像配准精度。展开更多
With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component...With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component with high accuracy and reliability, a new visual positioning method was introduced. Considering the limitations of Ghosal sub-pixel edge detection algorithm, an improved algorithm was proposed, in which Harris corner features were used to coarsely detect the edge points and Zernike moments were adopted to accurately detect the edge points. Besides, two formulas were developed to determine the edge intersections whose sub-pixel coordinates were calculated with bilinear interpolation and conjugate gradient method. The last experimental results show that the proposed method can detect the deflection and offset, and the detection errors are less than 0.04° and 0.02 pixels.展开更多
针对目前原始自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)在相似环境下绑架检测容易出错且重定位极易失败等问题,提出基于墙角族语义尺寸链的改进AMCL算法.融合机器人多传感器信息和Gmapping算法构建二维栅格地图,基于...针对目前原始自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)在相似环境下绑架检测容易出错且重定位极易失败等问题,提出基于墙角族语义尺寸链的改进AMCL算法.融合机器人多传感器信息和Gmapping算法构建二维栅格地图,基于Yolov5获取室内环境的目标检测框和类别信息,结合GrabCut算法和贝叶斯方法构建增量式语义映射地图;通过墙角的凸、凹和墙角相对于机器人的方位角对墙角进行分类,充分发掘语义映射地图中各墙角之间、墙角与室内物体之间的类别和位置关系,构建墙角族语义尺寸链和相应检索表;在定位过程中,基于墙角族语义尺寸链进行全局预定位,提出绑架检测机制进行绑架检测,在检测到绑架事件发生后,基于改进AMCL算法实现定位自恢复.最后,通过真实环境下的绑架实验验证了本文方法的有效性,实验表明,所提方法的全局定位准确率、全局定位速率、绑架检测准确率和绑架后定位准确率在相似环境下分别提升了42%、214%、88%和72%;在非相似环境下分别提升了44%、152%、12%和92%;在长走廊环境下分别提升了36%、426%、26%和68%.展开更多
文摘A new parallel algorithm for corner detection on object contour is presented in the paper. In this algorithm whenever a point (pixel) is scanned, the k direction codes between the two sides of the point, which is on the edge of an object, are obtained by k-step forward and backward boundary tracking. A comer is determined by the sum of the difference between the two weighted code chains. Note that the whole chain code sequence or boundary of an object is not necessary to be extracted at all in this algorithm, and the corners are obtained immediately once the image is scanned, furthermore, what humans perceive as corners can be detected and localized by this algorithm.
文摘为实现不同光学模态信息优势互补,以助力电力设备故障检测与定位任务,该文采用可见光图像增强红外图像的纹理信息。针对现有红外-可见光图像配准技术难以精确对齐电力设备局部精细化结构的问题,首次提出自适应监督重训配准算法(adaptive registration algorithm with supervision and retraining,ARSR),主要包括双阶各向异性高斯方向导数机制(dual order anisotropic Gaussian directional derivative,Dual-AGDD)以及双视图匹配参数重训框架(double-view matching parameter retraining,DVMPR)。首先,提出Dual-AGDD完成特征点筛选与定向。1阶AGDD进行自适应电力设备局部细化角点检测,2阶AGDD构建高斯特征三角形确定特征点主方向,采用局部强度不变性方法构建特征描述子。接着,提出DVMPR框架对图像透视尺度与视野旋转进行制约校正。最后,基于3σ原则改进支持向量回归,对误匹配点进行剔除,完成异源数据配准。试验结果显示,对不同旋转和尺度差异、不同环境的电力设备异源图像进行配准时,该文算法的平均定位误差为2.65,平均配准精确率为98.57%,具有较强的图像旋转、尺度不变性和环境鲁棒性,显著优于现有CAO-C2F、SuperPoint-SuperGlue等配准算法,可提高电力设备精细化结构异源图像配准精度。
基金Project(51175242)supported by the National Natural Science Foundation of ChinaProject(BA2012031)supported by the Jiangsu Province Science and Technology Foundation of China
文摘With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component with high accuracy and reliability, a new visual positioning method was introduced. Considering the limitations of Ghosal sub-pixel edge detection algorithm, an improved algorithm was proposed, in which Harris corner features were used to coarsely detect the edge points and Zernike moments were adopted to accurately detect the edge points. Besides, two formulas were developed to determine the edge intersections whose sub-pixel coordinates were calculated with bilinear interpolation and conjugate gradient method. The last experimental results show that the proposed method can detect the deflection and offset, and the detection errors are less than 0.04° and 0.02 pixels.
文摘针对目前原始自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)在相似环境下绑架检测容易出错且重定位极易失败等问题,提出基于墙角族语义尺寸链的改进AMCL算法.融合机器人多传感器信息和Gmapping算法构建二维栅格地图,基于Yolov5获取室内环境的目标检测框和类别信息,结合GrabCut算法和贝叶斯方法构建增量式语义映射地图;通过墙角的凸、凹和墙角相对于机器人的方位角对墙角进行分类,充分发掘语义映射地图中各墙角之间、墙角与室内物体之间的类别和位置关系,构建墙角族语义尺寸链和相应检索表;在定位过程中,基于墙角族语义尺寸链进行全局预定位,提出绑架检测机制进行绑架检测,在检测到绑架事件发生后,基于改进AMCL算法实现定位自恢复.最后,通过真实环境下的绑架实验验证了本文方法的有效性,实验表明,所提方法的全局定位准确率、全局定位速率、绑架检测准确率和绑架后定位准确率在相似环境下分别提升了42%、214%、88%和72%;在非相似环境下分别提升了44%、152%、12%和92%;在长走廊环境下分别提升了36%、426%、26%和68%.