We report a study of the electronic structure and optical properties of uranium dioxide (U02) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe ...We report a study of the electronic structure and optical properties of uranium dioxide (U02) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe the strong correlation between 5 f electrons of a uranium atom, we employ the on-site Hubbard U correction term and optimize the correlation parameter of the bulk uranium dioxide. Then we give the structural and electronic properties of the ground state of uranium dioxide. Based on the accurate electronic structure, we calculate the complex dielectric function of UO2 and the related optieM properties, such as reflectivity, refractive index, extinction index, energy loss spectra, and absorption coefficient.展开更多
We investigate the electronic structures of one and two monolayer iron phthalocyanine (FePc) molecules on Au(111) surfaces. The first monolayer FePc is lying flat on the Au(111) substrate, and the second monolay...We investigate the electronic structures of one and two monolayer iron phthalocyanine (FePc) molecules on Au(111) surfaces. The first monolayer FePc is lying flat on the Au(111) substrate, and the second monolayer FePc is tilted at -15° relative to the substrate plane along the nearest neighbour [101] direction with a lobe downward to the central hole of the unit cell in the first layer. The structural information obtained by first-principles calculations is in agreement with the experiment results. Furthermore, it is demonstrated that the electronic structures of FePc molecules in one-monolayer FePc/Au(111) system are perturbed significantly, while the electronic structures of FePc molecules in the second monolayer in two-monolayer FePc/Au(111) system remain almost unchanged due to the screening of the buffer layer on Au(111).展开更多
The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation....The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation. To model the alloys,16-atom supercells with the 2 × 2 × 2 dimensions are used and the dependency of the lattice parameter, bulk modulus,electronic structure, energy band gap, and optical bowing on the concentration x are analyzed. The results indicate that the ternary Tl_xGa_(1-x) As alloys have an average band gap bowing parameter of 4.48 eV for semiconductor alloys and 2.412 eV for semimetals. It is found that the band gap bowing strongly depends on composition and alloying a small Tl content with GaAs produces important modifications in the band structures of the alloys.展开更多
The structural, magnetic properties, and electronic structures of hexagonal Fe Co Sn compounds with as-annealed bulk and ribbon states were investigated by x-ray powder diffraction(XRD), differential scanning calori...The structural, magnetic properties, and electronic structures of hexagonal Fe Co Sn compounds with as-annealed bulk and ribbon states were investigated by x-ray powder diffraction(XRD), differential scanning calorimetry(DSC), transmission electron microscope(TEM), scanning electron microscope(SEM), magnetic measurements, and first-principles calculations. Results indicate that both states of FeCoSn show an Ni_2In-type hexagonal structure with a small amount of FeCo-rich secondary phase. The Curie temperatures are located at 257 K and 229 K, respectively. The corresponding magnetizations are 2.57 μB/f.u. and 2.94 μB/f.u. at 5 K with a field of 50 kOe(1 Oe = 79.5775 A·m^(-1)). The orbital hybridizations between 3 d elements are analyzed from the distribution of density of states(DOS), showing that Fe atoms carry the main magnetic moments and determine the electronic structure around Fermi level. A peak of DOS at Fermi level accounts for the presence of the FeCo-rich secondary phase. The Ni_2In-type hexagonal FeCoSn compound can be used during the isostructural alloying for tuning phase transitions.展开更多
The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc b...The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry.展开更多
The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improv...The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA + U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure Cd Se and Cd Te binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.展开更多
Kinetic investigations including quasi-classical trajectory and canonical unified statistical theory method calculations are carried out on a potential energy surface for the hydrogen-abstraction reaction from methane...Kinetic investigations including quasi-classical trajectory and canonical unified statistical theory method calculations are carried out on a potential energy surface for the hydrogen-abstraction reaction from methane by atom O(^3P).The surface is constructed using a modified Shepard interpolation method.The ab initio calculations are performed at the CCSD(T)level.Taking account of the contribution of inner core electrons to electronic correlation interaction in ab initio electronic structure calculations,modified optimized aug-cc-pCVQZ basis sets are applied to the all-electrons calculations.On this potential energy surface,the triplet oxygen atom attacks methane in a near-collinear H-CH3 direction to form a saddle point with barrier height of 13.55 kcal/mol,which plays a key role in the kinetics of the title reaction.For the temperature range of 298-2500 K,our calculated thermal rate constants for the O(^3P)+CH4→OH+CH3 reaction show good agreement with relevant experimental data.This work provides detailed mechanism of this gas-phase reaction and a theoretical guidance for methane combustion.展开更多
We present the local density approximate+Gutzwiller results for the electronic structure of Cal-xSrxVOa. The substitution of Sr2+ by Ca2+ reduces the bandwidth, as the V-O-V bond angle decreases from 180° for ...We present the local density approximate+Gutzwiller results for the electronic structure of Cal-xSrxVOa. The substitution of Sr2+ by Ca2+ reduces the bandwidth, as the V-O-V bond angle decreases from 180° for SrVO3 to about 160° for CaVO3. However, we find that the bandwidth decrease induced by the V-O-V bond angle decrease is smaller as compared to that induced by electron correlation. In correlated electron systems, such as Cal-=Sr=VOa, the correlation effect of 3d electrons plays a leading role in determining the bandwidth. The electron correlation effect and crystal field splitting collaboratively determine whether the compounds will be in a metal state or in a Mort-insulator phase.展开更多
Based on first-principles calculations, the electronic and magnetic properties of undoped and Li-doped rutile TiO2 have been studied. The results demonstrate that a cation vacancy can arouse ferromagnetism in TiO2 and...Based on first-principles calculations, the electronic and magnetic properties of undoped and Li-doped rutile TiO2 have been studied. The results demonstrate that a cation vacancy can arouse ferromagnetism in TiO2 and the magnetic moment mainly comes from p orbitals of O atoms around the Ti vacancy. However, the Ti vacancy under normal conditions is very difficult to form due to its high formation energy. Our calculations indicate that Li-doped TiO2 can reduce the formation energy while keeping the magnetism. The large magnetization energy indicates that Li-doped TiO2 is a promising room-temperature diluted magnetic semiconductor.展开更多
基金Supported by the New Century Excellent Talents in University in Ministry of Education of China under Grant No NCET-09-0867
文摘We report a study of the electronic structure and optical properties of uranium dioxide (U02) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe the strong correlation between 5 f electrons of a uranium atom, we employ the on-site Hubbard U correction term and optimize the correlation parameter of the bulk uranium dioxide. Then we give the structural and electronic properties of the ground state of uranium dioxide. Based on the accurate electronic structure, we calculate the complex dielectric function of UO2 and the related optieM properties, such as reflectivity, refractive index, extinction index, energy loss spectra, and absorption coefficient.
基金supported by the National Natural Science Foundation of China (Grant No.10774176)the National Basic Research Program of China (Grant Nos.2006CB806202 and 2006CB921305)the Shanghai Supercomputing Center,Chinese Academy of Sciences
文摘We investigate the electronic structures of one and two monolayer iron phthalocyanine (FePc) molecules on Au(111) surfaces. The first monolayer FePc is lying flat on the Au(111) substrate, and the second monolayer FePc is tilted at -15° relative to the substrate plane along the nearest neighbour [101] direction with a lobe downward to the central hole of the unit cell in the first layer. The structural information obtained by first-principles calculations is in agreement with the experiment results. Furthermore, it is demonstrated that the electronic structures of FePc molecules in one-monolayer FePc/Au(111) system are perturbed significantly, while the electronic structures of FePc molecules in the second monolayer in two-monolayer FePc/Au(111) system remain almost unchanged due to the screening of the buffer layer on Au(111).
文摘The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation. To model the alloys,16-atom supercells with the 2 × 2 × 2 dimensions are used and the dependency of the lattice parameter, bulk modulus,electronic structure, energy band gap, and optical bowing on the concentration x are analyzed. The results indicate that the ternary Tl_xGa_(1-x) As alloys have an average band gap bowing parameter of 4.48 eV for semiconductor alloys and 2.412 eV for semimetals. It is found that the band gap bowing strongly depends on composition and alloying a small Tl content with GaAs produces important modifications in the band structures of the alloys.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51431009 and 51271038)the Joint NSFC-ISF Research Program+1 种基金Jointly Funded by the National Natural Science Foundation of Chinathe Israel Science Foundation(Grant No.51561145003)
文摘The structural, magnetic properties, and electronic structures of hexagonal Fe Co Sn compounds with as-annealed bulk and ribbon states were investigated by x-ray powder diffraction(XRD), differential scanning calorimetry(DSC), transmission electron microscope(TEM), scanning electron microscope(SEM), magnetic measurements, and first-principles calculations. Results indicate that both states of FeCoSn show an Ni_2In-type hexagonal structure with a small amount of FeCo-rich secondary phase. The Curie temperatures are located at 257 K and 229 K, respectively. The corresponding magnetizations are 2.57 μB/f.u. and 2.94 μB/f.u. at 5 K with a field of 50 kOe(1 Oe = 79.5775 A·m^(-1)). The orbital hybridizations between 3 d elements are analyzed from the distribution of density of states(DOS), showing that Fe atoms carry the main magnetic moments and determine the electronic structure around Fermi level. A peak of DOS at Fermi level accounts for the presence of the FeCo-rich secondary phase. The Ni_2In-type hexagonal FeCoSn compound can be used during the isostructural alloying for tuning phase transitions.
基金Supported by the National Natural Science Foundation of China under Grant No 11474280the National Basic Research Program of China under Grant No 2011CB808200the Chinese Academy of Sciences under Grant Nos KJCX2-SW-N20 and KJCX2-SW-N03
文摘The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry.
文摘The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA + U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure Cd Se and Cd Te binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.
基金Project supported by the National Natural Science Foundation of China(Grant No.51574016)and completed while the author was in residence at UNSW,Australia supported by the International Cooperation Training Program for Innovative Talents of USTB.
文摘Kinetic investigations including quasi-classical trajectory and canonical unified statistical theory method calculations are carried out on a potential energy surface for the hydrogen-abstraction reaction from methane by atom O(^3P).The surface is constructed using a modified Shepard interpolation method.The ab initio calculations are performed at the CCSD(T)level.Taking account of the contribution of inner core electrons to electronic correlation interaction in ab initio electronic structure calculations,modified optimized aug-cc-pCVQZ basis sets are applied to the all-electrons calculations.On this potential energy surface,the triplet oxygen atom attacks methane in a near-collinear H-CH3 direction to form a saddle point with barrier height of 13.55 kcal/mol,which plays a key role in the kinetics of the title reaction.For the temperature range of 298-2500 K,our calculated thermal rate constants for the O(^3P)+CH4→OH+CH3 reaction show good agreement with relevant experimental data.This work provides detailed mechanism of this gas-phase reaction and a theoretical guidance for methane combustion.
基金Project supported by the National Natural Science Foundation of China (Grant No.10947001)
文摘We present the local density approximate+Gutzwiller results for the electronic structure of Cal-xSrxVOa. The substitution of Sr2+ by Ca2+ reduces the bandwidth, as the V-O-V bond angle decreases from 180° for SrVO3 to about 160° for CaVO3. However, we find that the bandwidth decrease induced by the V-O-V bond angle decrease is smaller as compared to that induced by electron correlation. In correlated electron systems, such as Cal-=Sr=VOa, the correlation effect of 3d electrons plays a leading role in determining the bandwidth. The electron correlation effect and crystal field splitting collaboratively determine whether the compounds will be in a metal state or in a Mort-insulator phase.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11005049 and 61006051)
文摘Based on first-principles calculations, the electronic and magnetic properties of undoped and Li-doped rutile TiO2 have been studied. The results demonstrate that a cation vacancy can arouse ferromagnetism in TiO2 and the magnetic moment mainly comes from p orbitals of O atoms around the Ti vacancy. However, the Ti vacancy under normal conditions is very difficult to form due to its high formation energy. Our calculations indicate that Li-doped TiO2 can reduce the formation energy while keeping the magnetism. The large magnetization energy indicates that Li-doped TiO2 is a promising room-temperature diluted magnetic semiconductor.