Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reser...Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.展开更多
High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and ...High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.展开更多
With the purpose of enhancing effective collaboration between architects and structural engineers in the building design field, an integration tool was developed for supporting information exchange from architectural ...With the purpose of enhancing effective collaboration between architects and structural engineers in the building design field, an integration tool was developed for supporting information exchange from architectural model to structural model. The PKPM (Bopomofo acronym, a Chinese building design software) structural model and an industry foundation classes (IFC) data model were adopted and analyzed to design the framework of the integration tool. The technique of mixed program languages (C++ and FORTRAN) was applied to developing the tool software, and the connectivity relationships and intersection nodes between the structural elements were optimized and simplified. A case study was implemented to illustrate the method to use the integration tool for information exchange from IFC-format architectural model to PKPM structural model. The results show that the tool can extract the information of architectural model and form a corresponding structural model. The presented method can help to enhance the modeline efficiency at the structural design phase.展开更多
Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished direct...Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.展开更多
For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can b...For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.展开更多
In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models...In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.展开更多
A terahertz(THz)wave transmitted through vegetation experiences both absorption and scattering caused by the air molecules and leaves.This paper presents the scattering attenuation characteristics of vegetation in a T...A terahertz(THz)wave transmitted through vegetation experiences both absorption and scattering caused by the air molecules and leaves.This paper presents the scattering attenuation characteristics of vegetation in a THz range.The theoretical path loss model near the vegetation yields the average attenuation of THz waves in a mixed channel composed of air and vegetation leaves.Furthermore,a simplified model of the vegetation structure is obtained for generic vegetation types based on a variety of parameters,such as leaf size,distribution,and moisture content.Finally,based on specific vegetation species and different levels of air humidity,the attenuation characteristics under different conditions are calculated,and the influence of different model parameters on the attenuation characteristics is obtained.展开更多
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ...Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.展开更多
A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the d...A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.展开更多
This work aimed to explore the switch tendency of bicycle use between cyclists and non-cyclists.The attitude based market segmentation approach was proposed to achieve the research objective.The filed investigations w...This work aimed to explore the switch tendency of bicycle use between cyclists and non-cyclists.The attitude based market segmentation approach was proposed to achieve the research objective.The filed investigations were conducted in Nanjing,China,to obtain travelers' actions and attitudes towards bicycle uses.The structural equation modeling(SEM) was used to identify the attitudinal factors indicating variables and to explore the interrelationships among them.The SEMs were developed separately for the cyclist group and the non-cyclist group.All respondents were clustered into eight distinct segments by six selected attitudinal factors.The mode switch tendency and attitude in each segment is different from others,indicating that different segments have particular policies or strategies to encourage cycling.Policy implications that best serve the potential bicycle users were discussed to reduce the number of cyclists who have high tendency to use other modes,and increase the possibility of using bicycle in the non-cyclists group with the moderate and high switch tendency.展开更多
Nowadays,crowded environment and high-speed life pace are likely to bring mental stress and fatigue to citizens.How to apply achievements of the restorative environment into urban planning and environmental design has...Nowadays,crowded environment and high-speed life pace are likely to bring mental stress and fatigue to citizens.How to apply achievements of the restorative environment into urban planning and environmental design has received more attention in recent years.Earlier research does not provide detailed information about the specific components of the physical environment that support restoration.This study explores which characteristics of the street environment and psychological factors of the street environment have an impact on subjective restoration.The streets were sampled from Shenzhen.Each street was represented by a single photo.The photo was quantified in terms of the different objective street components and also rated on psychological variables related to restoration.The rating on the psychological variables,being away,fascination,coherence,scope,the likelihood of restoration,and preference were provided by people of various ages and occupations.The results show that:1)the proportion of natural elements have the greatest impact on street restoration benefits and preference,and its impact is robust;2)the two characteristics of street safety and quiet are important to street restoration benefits and preferences;3)fascination and being away have a greater impact on restorative benefits of streets,followed by coherence,and the scope of the street has no significant effect on restorative benefits.The study could provide evidence for policy-makers and urban design and planning interventions.展开更多
基金Projects(41330638,41272154)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),ChinaProject(2014M551705)supported by the China Postdoctoral Science Foundation
文摘Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.
文摘High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.
基金Project(2006BAJ01B01-01) supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period
文摘With the purpose of enhancing effective collaboration between architects and structural engineers in the building design field, an integration tool was developed for supporting information exchange from architectural model to structural model. The PKPM (Bopomofo acronym, a Chinese building design software) structural model and an industry foundation classes (IFC) data model were adopted and analyzed to design the framework of the integration tool. The technique of mixed program languages (C++ and FORTRAN) was applied to developing the tool software, and the connectivity relationships and intersection nodes between the structural elements were optimized and simplified. A case study was implemented to illustrate the method to use the integration tool for information exchange from IFC-format architectural model to PKPM structural model. The results show that the tool can extract the information of architectural model and form a corresponding structural model. The presented method can help to enhance the modeline efficiency at the structural design phase.
基金Project(2014CB239205)supported by the National Basic Research Program of ChinaProject(20011ZX05030-005-003)supported by the National Science and Technology Major Project of China
文摘Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.
基金Projects(51405516,U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Science and Technology Program for Hunan Provincial Science and Technology Department,ChinaProject(2013zzts040)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.
文摘In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.
基金the Fundamental Research Funds for the Central Universities(NT2021026).
文摘A terahertz(THz)wave transmitted through vegetation experiences both absorption and scattering caused by the air molecules and leaves.This paper presents the scattering attenuation characteristics of vegetation in a THz range.The theoretical path loss model near the vegetation yields the average attenuation of THz waves in a mixed channel composed of air and vegetation leaves.Furthermore,a simplified model of the vegetation structure is obtained for generic vegetation types based on a variety of parameters,such as leaf size,distribution,and moisture content.Finally,based on specific vegetation species and different levels of air humidity,the attenuation characteristics under different conditions are calculated,and the influence of different model parameters on the attenuation characteristics is obtained.
基金Projects(2016YFE0200100,2018YFC1505300-5.3)supported by the National Key Research&Development Plan of ChinaProject(51639002)supported by the Key Program of National Natural Science Foundation of China
文摘Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.
基金Project(51275205)supported by the National Natural Science Foundation of China
文摘A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.
基金Projects(51208256,51178157)supported by the National Natural Science Foundation of ChinaProject(2012-K5-13)supported by the Ministry of Housing and Urban-Rural Development of China
文摘This work aimed to explore the switch tendency of bicycle use between cyclists and non-cyclists.The attitude based market segmentation approach was proposed to achieve the research objective.The filed investigations were conducted in Nanjing,China,to obtain travelers' actions and attitudes towards bicycle uses.The structural equation modeling(SEM) was used to identify the attitudinal factors indicating variables and to explore the interrelationships among them.The SEMs were developed separately for the cyclist group and the non-cyclist group.All respondents were clustered into eight distinct segments by six selected attitudinal factors.The mode switch tendency and attitude in each segment is different from others,indicating that different segments have particular policies or strategies to encourage cycling.Policy implications that best serve the potential bicycle users were discussed to reduce the number of cyclists who have high tendency to use other modes,and increase the possibility of using bicycle in the non-cyclists group with the moderate and high switch tendency.
文摘Nowadays,crowded environment and high-speed life pace are likely to bring mental stress and fatigue to citizens.How to apply achievements of the restorative environment into urban planning and environmental design has received more attention in recent years.Earlier research does not provide detailed information about the specific components of the physical environment that support restoration.This study explores which characteristics of the street environment and psychological factors of the street environment have an impact on subjective restoration.The streets were sampled from Shenzhen.Each street was represented by a single photo.The photo was quantified in terms of the different objective street components and also rated on psychological variables related to restoration.The rating on the psychological variables,being away,fascination,coherence,scope,the likelihood of restoration,and preference were provided by people of various ages and occupations.The results show that:1)the proportion of natural elements have the greatest impact on street restoration benefits and preference,and its impact is robust;2)the two characteristics of street safety and quiet are important to street restoration benefits and preferences;3)fascination and being away have a greater impact on restorative benefits of streets,followed by coherence,and the scope of the street has no significant effect on restorative benefits.The study could provide evidence for policy-makers and urban design and planning interventions.