Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingsha...Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingshankou Formation,the Songliao Basin.Sedimentary and elemental signatures confirm the protogenetic origin of this nodule and its effectiveness in recording geochemical characteristics of paleo-lake water during dolomitization.The low Y/Ho ratios,middle rare earth element(MREE)enrichment and subtle positive Eu anomalies within the nodule indicate a fresh water source.However,the Sr isotope values in the core of the nodule(0.7076-0.7080)are close to contemporaneous seawater(0.7074),yet different from the modern river(0.7120)and the host black shale(0.7100).On the premise of excluding the influence of hydrothermal fluids,the significantly low strontium isotope values of the lacustrine dolomite might be caused by seawater interference during dolomitization.Our findings demonstrate that lacustrine dolomite within black shales is not only a faithful tracer of diagenetic water environment,but also a novel and easily identified mineralogical evidence for episodic seawater intrusion event(91 Ma)in the Songliao Basin,which supplements other paleontological and geochemical evidence.展开更多
The Callovian-Oxfordian carbonate reservoirs are the most important hydrocarbon reservoir in the Samandepe gas field,Amu Darya basin,Turkmenistan.Based on the analysis of Fe,Mn and Sr trace elements,and carbon,oxygen ...The Callovian-Oxfordian carbonate reservoirs are the most important hydrocarbon reservoir in the Samandepe gas field,Amu Darya basin,Turkmenistan.Based on the analysis of Fe,Mn and Sr trace elements,and carbon,oxygen and strontium isotopes,the genesis and evolutionary characteristics of the carbonate reservoirs were studied,and the conclusions were follows:1) Sustained transgressive-regressive cycles played an important role during Callovian-Oxfordian.The reservoir of reef-bank facies was well developed in the period of transgression,while the regional dense cap rocks developed in the period of regression;2) The 87 Sr/86 Sr ratio measured from rudist shells yields an age of 157.2 Ma according to the global strontium isotope curve;3) As diagenetic intensity increased,δ 13 C changed little,and δ 18 O showed strong negative deviation but was still limited to the range of Late Jurassic seawater.High Fe and Sr contents,and low Mn content,and the evolutionary trend of δ 13 C and δ 18 O all indicate that diagenesis occurred in a relatively confined environment,where the fluids were relatively reducing and contained hot brine.The stage of diagenesis reached is mesodiagenesis,which is very favorable for preservation of primary pores in carbonates;4) Strong dissolution of reef limestones,burial dolomitization and hydrothermal calcite precipitation were all the results of the interaction between the 87 Sr-rich diagenetic fluid and rocks;5) The analysis results of isotopes,fluid inclusions and vitrinite reflectance show that the diagenetic fluid was compaction-released water that originated from the deep,coal-bearing clastic strata.展开更多
基金supported by Project of Basic Science Center of National Natural Science Foundation of China(72088101)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010101)+3 种基金National Key Research and Development Program of China(2017YFC0603101)National Natural Science Foundation of China(41872125,42002158)Scientific and Technological Project of RIPED(2021ycq01)the subject development project of RIPED(yjkt2019-3).
文摘Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingshankou Formation,the Songliao Basin.Sedimentary and elemental signatures confirm the protogenetic origin of this nodule and its effectiveness in recording geochemical characteristics of paleo-lake water during dolomitization.The low Y/Ho ratios,middle rare earth element(MREE)enrichment and subtle positive Eu anomalies within the nodule indicate a fresh water source.However,the Sr isotope values in the core of the nodule(0.7076-0.7080)are close to contemporaneous seawater(0.7074),yet different from the modern river(0.7120)and the host black shale(0.7100).On the premise of excluding the influence of hydrothermal fluids,the significantly low strontium isotope values of the lacustrine dolomite might be caused by seawater interference during dolomitization.Our findings demonstrate that lacustrine dolomite within black shales is not only a faithful tracer of diagenetic water environment,but also a novel and easily identified mineralogical evidence for episodic seawater intrusion event(91 Ma)in the Songliao Basin,which supplements other paleontological and geochemical evidence.
文摘The Callovian-Oxfordian carbonate reservoirs are the most important hydrocarbon reservoir in the Samandepe gas field,Amu Darya basin,Turkmenistan.Based on the analysis of Fe,Mn and Sr trace elements,and carbon,oxygen and strontium isotopes,the genesis and evolutionary characteristics of the carbonate reservoirs were studied,and the conclusions were follows:1) Sustained transgressive-regressive cycles played an important role during Callovian-Oxfordian.The reservoir of reef-bank facies was well developed in the period of transgression,while the regional dense cap rocks developed in the period of regression;2) The 87 Sr/86 Sr ratio measured from rudist shells yields an age of 157.2 Ma according to the global strontium isotope curve;3) As diagenetic intensity increased,δ 13 C changed little,and δ 18 O showed strong negative deviation but was still limited to the range of Late Jurassic seawater.High Fe and Sr contents,and low Mn content,and the evolutionary trend of δ 13 C and δ 18 O all indicate that diagenesis occurred in a relatively confined environment,where the fluids were relatively reducing and contained hot brine.The stage of diagenesis reached is mesodiagenesis,which is very favorable for preservation of primary pores in carbonates;4) Strong dissolution of reef limestones,burial dolomitization and hydrothermal calcite precipitation were all the results of the interaction between the 87 Sr-rich diagenetic fluid and rocks;5) The analysis results of isotopes,fluid inclusions and vitrinite reflectance show that the diagenetic fluid was compaction-released water that originated from the deep,coal-bearing clastic strata.