文摘针对现有基于数据驱动的随机子空间(data-driven stochastic subspace identification,DATA-SSI)算法存在的不足,无法实现稳定图中真假模态的智能化筛选,提出了一种新的模态参数智能化识别算法。首先通过引入滑窗技术来实现对输入信号的合理划分,以避免虚假模态和模态遗漏现象的出现;其次通过引入OPTICS(ordering points to identify the clustering structure)密度聚类算法实现稳定图中真实模态的智能化筛选,最后将所提算法运用于某实际大型斜拉桥主梁结构的频率和模态振型识别过程中。结果表明,所提改进算法识别的频率值结果与理论值(MIDAS有限元结果)以及实际值(现场动力特性实测结果)间的误差均在5%以内,且识别的模态振型图与理论模态振型图具有很高的相似性。
文摘为了提高辨识稳定图中真实模态的准确性与自动化程度,首先,从稳定点定义方式的角度论述了聚类算法效果欠佳的原因,并采用异阶系统非等权重的定义方式输出稳定点;其次,基于数据挖掘思想,采用改进的辨识聚类结构的有序点(ordering points to identify the clustering structure,简称OPTICS)算法自动清洗稳定点集,通过遍历性搜索的方式确定输入参数;然后,提出结合度矩阵去噪的自适应局部密度谱聚类(local density adaptive spectral clustering,简称SC-DA)算法分析稳定点集,并以簇中值作为模态参数的代表值,实现模态参数的自动化识别;最后,将含有密集模态的外滩大桥作为识别对象进行试验验证。试验结果表明:所提出方法具有较高的精度,与频域分解(frequency domain decomposition,简称FDD)法的频率结果最大相差仅为0.012 3 Hz,且在线识别的准确率达到82.86%,显著高于基于层次聚类的自动识别方法,实现了无人工干预下模态参数的自动、准确识别,具有一定的工程应用前景。