The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding sto...The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. I...This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.展开更多
We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution co...We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.展开更多
Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of severa...Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.展开更多
Developing a course of action(COA) is a key step in military planning. In most extant studies on the COA development,only the unilateral actions of friendly forces are considered. Based on stochastic games, we propose...Developing a course of action(COA) is a key step in military planning. In most extant studies on the COA development,only the unilateral actions of friendly forces are considered. Based on stochastic games, we propose models that could deal with the complexities and uncertainties of wars. By analyzing the equilibrium state of both opponent sides, outcomes preferable to one side could be achieved by adopting the methods obtained from the proposed models. This research could help decision makers take the right COA in a state of uncertainty.展开更多
The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabil...The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabilization of the stochastic system without disturbance input is investigated by nonlinear matrix inequality method.Then,a full-order stochastic dynamic output feedback controller is designed by solving a bilinear matrix inequality(BMI),which ensures a prescribed stochastic robust H_∞ performance level for the resulting closed-loop system with nonzero disturbance input and for all admissible uncertainties.An illustrative example is provided to show the feasibility of the controller and the potential of the proposed technique.展开更多
Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with resp...Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.展开更多
A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measure...A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measured information for the FTC is the probability density functions(PDFs) of the system output rather than its measured value.A radial basis functions(RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network.As a result,the nonlinear FTC problem subject to dynamic relation between the input and the output PDFs can be transformed into a nonlinear FTC problem subject to dynamic relation between the control input and the weights of the RBFs neural network approximation to the output PDFs.The FTC design consists of two steps.The first step is fault detection and diagnosis(FDD),which can produce an alarm when there is a fault in the system and also locate which component has a fault.The second step is to adapt the controller to the faulty case so that the system is able to achieve its target.A linear matrix inequality(LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed.An illustrated example is included to demonstrate the efficiency of the proposed algorithm,and satisfactory results have been obtained.展开更多
Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system ca...Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system can be used to model the dynamics of a repairable system whose performance regimes switch according to the external conditions. For example, to satisfy the demand variation that is typical for the power and communication systems and reduce the cost, these systems usually adjust their operating regimes. The transition rate matrices under distinct operating regimes are assumed to be different and the sojourn times in distinct regimes are governed by a finite state Markov chain. By using the theory of Markov process, Ion channel theory, and Laplace transforms, the up time of the system are studied. A numerical example is given to illustrate the obtained results. The effect of sojourn times in distinct regimes on the availability and the up time are also discussed in the numerical example.展开更多
The stochastic convergence of the cubature Kalmanfilter with intermittent observations (CKFI) for general nonlinearstochastic systems is investigated. The Bernoulli distributed ran-dom variable is employed to descri...The stochastic convergence of the cubature Kalmanfilter with intermittent observations (CKFI) for general nonlinearstochastic systems is investigated. The Bernoulli distributed ran-dom variable is employed to describe the phenomenon of intermit-tent observations. According to the cubature sample principle, theestimation error and the error covariance matrix (ECM) of CKFIare derived by Taylor series expansion, respectively. Afterwards, itis theoretically proved that the ECM will be bounded if the obser-vation arrival probability exceeds a critical minimum observationarrival probability. Meanwhile, under proper assumption corre-sponding with real engineering situations, the stochastic stabilityof the estimation error can be guaranteed when the initial estima-tion error and the stochastic noise terms are sufficiently small. Thetheoretical conclusions are verified by numerical simulations fortwo illustrative examples; also by evaluating the tracking perfor-mance of the optical-electric target tracking system implementedby CKFI and unscented Kalman filter with intermittent observa-tions (UKFI) separately, it is demonstrated that the proposed CKFIslightly outperforms the UKFI with respect to tracking accuracy aswell as real time performance.展开更多
When the bi-stable stochastic resonance method was applied to enhance weak thruster fault for autonomous underwater vehicle(AUV), the enhancement performance could not satisfy the detection requirement of weak thruste...When the bi-stable stochastic resonance method was applied to enhance weak thruster fault for autonomous underwater vehicle(AUV), the enhancement performance could not satisfy the detection requirement of weak thruster fault. As for this problem, a fault feature enhancement method based on mono-stable stochastic resonance was proposed. In the method, in order to improve the enhancement performance of weak thruster fault feature, the conventional bi-stable potential function was changed to mono-stable potential function which was more suitable for aperiodic signals. Furthermore, when particle swarm optimization was adopted to adjust the parameters of mono-stable stochastic resonance system, the global convergent time would be long. An improved particle swarm optimization method was developed by changing the linear inertial weighted function as nonlinear function with cosine function, so as to reduce the global convergent time. In addition, when the conventional wavelet reconstruction method was adopted to detect the weak thruster fault, undetected fault or false alarm may occur. In order to successfully detect the weak thruster fault, a weak thruster detection method was proposed based on the integration of stochastic resonance and wavelet reconstruction. In the method, the optimal reconstruction scale was determined by comparing wavelet entropies corresponding to each decomposition scale. Finally, pool-experiments were performed on AUV with thruster fault. The effectiveness of the proposed mono-stable stochastic resonance method in enhancing fault feature and reducing the global convergent time was demonstrated in comparison with particle swarm optimization based bi-stochastic resonance method. Furthermore, the effectiveness of the proposed fault detection method was illustrated in comparison with the conventional wavelet reconstruction.展开更多
To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system wi...To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system with norm-bounded parameter uncertainties and time delay. Based on the linear matrix inequality (LMI) techniques and stability theory of stochastic differential equations, a stochastic Lyapunov function method is adopted to design a state feedback fuzzy controller. The resulting closed-loop fuzzy system is robustly reliable stochastically stable, and the corresponding quadratic cost function is guaranteed to be no more than a certain upper bound for all admissible uncertainties, as well as different actuator fault cases. A sufficient condition of existence and design method of robust reliable guaranteed cost controller is presented. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.展开更多
A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of hu...A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems.展开更多
The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the ...The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions.展开更多
A novel strategy of probability density function (PDF) shape control is proposed in stochastic systems. The control er is designed whose parameters are optimal y obtained through the improved particle swarm optimiza...A novel strategy of probability density function (PDF) shape control is proposed in stochastic systems. The control er is designed whose parameters are optimal y obtained through the improved particle swarm optimization algorithm. The parameters of the control er are viewed as the space position of a particle in particle swarm optimization algorithm and updated continual y until the control er makes the PDF of the state variable as close as possible to the expected PDF. The proposed PDF shape control technique is compared with the equivalent linearization technique through simulation experiments. The results show the superiority and the effectiveness of the proposed method. The control er is excellent in making the state PDF fol ow the expected PDF and has the very smal error between the state PDF and the expected PDF, solving the control problem of the PDF shape in stochastic systems effectively.展开更多
A useful life prediction method based on the integration of the stochastic hybrid automata(SHA) model and the frame of the dynamic fault tree(DFT) is proposed. The SHA model can incorporate the orbit environment, work...A useful life prediction method based on the integration of the stochastic hybrid automata(SHA) model and the frame of the dynamic fault tree(DFT) is proposed. The SHA model can incorporate the orbit environment, work modes, system configuration, dynamic probabilities and degeneration of components,as well as spacecraft dynamics and kinematics. By introducing the frame of DFT, the system is classified into several layers, and the problem of state combination explosion is artfully overcome.An improved dynamic reliability model(DRM) based on the Nelson hypothesis is investigated to improve the defect of cumulative failure probability(CFP), which is used to address the failure probability of components in the SHA model. The simulation using the Monte-Carlo method is finally conducted on two satellites, which are deployed with the same multi-gyro subsystem but run on different orbits. The results show that the predicted useful life of the attitude control system(ACS) with consideration of abrupt failure,degradation, and running environment is quite different between the two satellites.展开更多
Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependenc...Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependence among activity durations when more than one activity is possibly affected by the same indeterminate factors. On this basis of analysis of indeterminate effect factors of durations, the effect factors-based stochastic network planning (EFBSNP) model is proposed, which emphasizes on the effects of not only logistic and organizational relationships, but also the dependent relationships, due to indeterminate factors among activity durations on the project period. By virtue of indeterminate factor analysis the model extracts and describes the quantitatively indeterminate effect factors, and then takes into account the indeterminate factors effect schedule by using the Monte Carlo simulation technique. The method is flexible enough to deal with effect factors and is coincident with practice. A software has been developed to simplify the model-based calculation, in VisualStudio.NET language. Finally, a case study is included to demonstrate the applicability of the proposed model and comparison is made with some advantages over the existing models.展开更多
基金Supported by the National Natural Science Foundation of China(10671182)。
文摘The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
文摘This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.
基金Supported by the Science and Technology Research Projects of Hubei Provincial Department of Education(B2022077)。
文摘We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.
基金National Natural Science Foundation of China (4007401340134010)Chinese Joint Seismological Science Foundation (042002) and the project during the Tenth Five-year Plan.
文摘Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.
基金supported by the Natural Science Foundation of China(71471174)
文摘Developing a course of action(COA) is a key step in military planning. In most extant studies on the COA development,only the unilateral actions of friendly forces are considered. Based on stochastic games, we propose models that could deal with the complexities and uncertainties of wars. By analyzing the equilibrium state of both opponent sides, outcomes preferable to one side could be achieved by adopting the methods obtained from the proposed models. This research could help decision makers take the right COA in a state of uncertainty.
基金supported by the National Natural Science Foundation of China(607404306646087403160904060)
文摘The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabilization of the stochastic system without disturbance input is investigated by nonlinear matrix inequality method.Then,a full-order stochastic dynamic output feedback controller is designed by solving a bilinear matrix inequality(BMI),which ensures a prescribed stochastic robust H_∞ performance level for the resulting closed-loop system with nonzero disturbance input and for all admissible uncertainties.An illustrative example is provided to show the feasibility of the controller and the potential of the proposed technique.
文摘Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.
基金supported by the UK Leverhulme Trust (F/00 120/BC)the National Natural Science Foundation of China (6082800760974029)
文摘A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measured information for the FTC is the probability density functions(PDFs) of the system output rather than its measured value.A radial basis functions(RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network.As a result,the nonlinear FTC problem subject to dynamic relation between the input and the output PDFs can be transformed into a nonlinear FTC problem subject to dynamic relation between the control input and the weights of the RBFs neural network approximation to the output PDFs.The FTC design consists of two steps.The first step is fault detection and diagnosis(FDD),which can produce an alarm when there is a fault in the system and also locate which component has a fault.The second step is to adapt the controller to the faulty case so that the system is able to achieve its target.A linear matrix inequality(LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed.An illustrated example is included to demonstrate the efficiency of the proposed algorithm,and satisfactory results have been obtained.
基金supported by the National Natural Science Foundation of China (71071020 60705036)Beijing Excellent Doctoral Dissertation Instructor Project of Humanities and Social Sciences(yb20091000701)
文摘Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system can be used to model the dynamics of a repairable system whose performance regimes switch according to the external conditions. For example, to satisfy the demand variation that is typical for the power and communication systems and reduce the cost, these systems usually adjust their operating regimes. The transition rate matrices under distinct operating regimes are assumed to be different and the sojourn times in distinct regimes are governed by a finite state Markov chain. By using the theory of Markov process, Ion channel theory, and Laplace transforms, the up time of the system are studied. A numerical example is given to illustrate the obtained results. The effect of sojourn times in distinct regimes on the availability and the up time are also discussed in the numerical example.
基金supported by the National Natural Science Foundation of China(6110418661273076)
文摘The stochastic convergence of the cubature Kalmanfilter with intermittent observations (CKFI) for general nonlinearstochastic systems is investigated. The Bernoulli distributed ran-dom variable is employed to describe the phenomenon of intermit-tent observations. According to the cubature sample principle, theestimation error and the error covariance matrix (ECM) of CKFIare derived by Taylor series expansion, respectively. Afterwards, itis theoretically proved that the ECM will be bounded if the obser-vation arrival probability exceeds a critical minimum observationarrival probability. Meanwhile, under proper assumption corre-sponding with real engineering situations, the stochastic stabilityof the estimation error can be guaranteed when the initial estima-tion error and the stochastic noise terms are sufficiently small. Thetheoretical conclusions are verified by numerical simulations fortwo illustrative examples; also by evaluating the tracking perfor-mance of the optical-electric target tracking system implementedby CKFI and unscented Kalman filter with intermittent observa-tions (UKFI) separately, it is demonstrated that the proposed CKFIslightly outperforms the UKFI with respect to tracking accuracy aswell as real time performance.
基金Project(51279040)supported by the National Natural Science Foundation of China
文摘When the bi-stable stochastic resonance method was applied to enhance weak thruster fault for autonomous underwater vehicle(AUV), the enhancement performance could not satisfy the detection requirement of weak thruster fault. As for this problem, a fault feature enhancement method based on mono-stable stochastic resonance was proposed. In the method, in order to improve the enhancement performance of weak thruster fault feature, the conventional bi-stable potential function was changed to mono-stable potential function which was more suitable for aperiodic signals. Furthermore, when particle swarm optimization was adopted to adjust the parameters of mono-stable stochastic resonance system, the global convergent time would be long. An improved particle swarm optimization method was developed by changing the linear inertial weighted function as nonlinear function with cosine function, so as to reduce the global convergent time. In addition, when the conventional wavelet reconstruction method was adopted to detect the weak thruster fault, undetected fault or false alarm may occur. In order to successfully detect the weak thruster fault, a weak thruster detection method was proposed based on the integration of stochastic resonance and wavelet reconstruction. In the method, the optimal reconstruction scale was determined by comparing wavelet entropies corresponding to each decomposition scale. Finally, pool-experiments were performed on AUV with thruster fault. The effectiveness of the proposed mono-stable stochastic resonance method in enhancing fault feature and reducing the global convergent time was demonstrated in comparison with particle swarm optimization based bi-stochastic resonance method. Furthermore, the effectiveness of the proposed fault detection method was illustrated in comparison with the conventional wavelet reconstruction.
基金the National Natural Science Foundation of China (60574088,60274014).
文摘To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system with norm-bounded parameter uncertainties and time delay. Based on the linear matrix inequality (LMI) techniques and stability theory of stochastic differential equations, a stochastic Lyapunov function method is adopted to design a state feedback fuzzy controller. The resulting closed-loop fuzzy system is robustly reliable stochastically stable, and the corresponding quadratic cost function is guaranteed to be no more than a certain upper bound for all admissible uncertainties, as well as different actuator fault cases. A sufficient condition of existence and design method of robust reliable guaranteed cost controller is presented. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.
基金supported by the Doctor Students Innovation Foundation of Southwest Jiaotong University.
文摘A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems.
基金supported by Department of Science and Technology,New Delhi,India(SR/S4/MS:485/07)
文摘The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions.
基金supported by the National Natural Science Fundation of China(61273127)the Specialized Research Fund of the Doctoral Program in Higher Education(20106118110009+2 种基金20116118110008)the Scientific Research Plan Projects of Shaanxi Education Department(12JK0524)the Young Teachers Scientific Research Fund of Xi’an University of Posts and Telecommunications(1100434)
文摘A novel strategy of probability density function (PDF) shape control is proposed in stochastic systems. The control er is designed whose parameters are optimal y obtained through the improved particle swarm optimization algorithm. The parameters of the control er are viewed as the space position of a particle in particle swarm optimization algorithm and updated continual y until the control er makes the PDF of the state variable as close as possible to the expected PDF. The proposed PDF shape control technique is compared with the equivalent linearization technique through simulation experiments. The results show the superiority and the effectiveness of the proposed method. The control er is excellent in making the state PDF fol ow the expected PDF and has the very smal error between the state PDF and the expected PDF, solving the control problem of the PDF shape in stochastic systems effectively.
基金supported by the Fundamental Research Funds for the Central Universities(2016083)
文摘A useful life prediction method based on the integration of the stochastic hybrid automata(SHA) model and the frame of the dynamic fault tree(DFT) is proposed. The SHA model can incorporate the orbit environment, work modes, system configuration, dynamic probabilities and degeneration of components,as well as spacecraft dynamics and kinematics. By introducing the frame of DFT, the system is classified into several layers, and the problem of state combination explosion is artfully overcome.An improved dynamic reliability model(DRM) based on the Nelson hypothesis is investigated to improve the defect of cumulative failure probability(CFP), which is used to address the failure probability of components in the SHA model. The simulation using the Monte-Carlo method is finally conducted on two satellites, which are deployed with the same multi-gyro subsystem but run on different orbits. The results show that the predicted useful life of the attitude control system(ACS) with consideration of abrupt failure,degradation, and running environment is quite different between the two satellites.
文摘Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependence among activity durations when more than one activity is possibly affected by the same indeterminate factors. On this basis of analysis of indeterminate effect factors of durations, the effect factors-based stochastic network planning (EFBSNP) model is proposed, which emphasizes on the effects of not only logistic and organizational relationships, but also the dependent relationships, due to indeterminate factors among activity durations on the project period. By virtue of indeterminate factor analysis the model extracts and describes the quantitatively indeterminate effect factors, and then takes into account the indeterminate factors effect schedule by using the Monte Carlo simulation technique. The method is flexible enough to deal with effect factors and is coincident with practice. A software has been developed to simplify the model-based calculation, in VisualStudio.NET language. Finally, a case study is included to demonstrate the applicability of the proposed model and comparison is made with some advantages over the existing models.