The detailed mechanism of CuI-catalyzed C-O intramolecular coupling reaction of 2-(2-bromo-4-fluoro-phenyl)-l- cyclohexen-1-yl trifluoromethane-sulfonate was studied with the density functional theory (DFT). The g...The detailed mechanism of CuI-catalyzed C-O intramolecular coupling reaction of 2-(2-bromo-4-fluoro-phenyl)-l- cyclohexen-1-yl trifluoromethane-sulfonate was studied with the density functional theory (DFT). The geometries of the reactants, transition states, intermediates and products were optimized at the B3LYP/6-31 +G* level. Meanwhile, the single point energy of species involved in gas and solvent at B3LYP/6-31 I+G* level was individually investigated. Polarizable continuum models (PCM) were applied to the dioxane and water solutions at the same level, respectively. Results show that the rate-limiting step, M3→TS3, does not change in different solutions. However, the activation energy in a dioxane solution is lower than that in water, which explains the previous experimental results. Compared with the non-catalyzed reaction process, the activation energy of the rate- limiting step is reduced by 56.53 kJ mo1-1 in gas and 44.84 kJ mol-l in solvent, demonstrating a high catalytic efficiency of CuI.展开更多
基金supported by the National Natural Science Foundation of China(21003009)Beijing Jiaotong University,China(2009JBZ019-4 and Undergraduates Innovating Experimentation Project)the Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry,Chinese Academy of Sciences~~
基金supported by the National Natural Science Foundation of China(20773089)Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China(20071108-18-15)~~
文摘The detailed mechanism of CuI-catalyzed C-O intramolecular coupling reaction of 2-(2-bromo-4-fluoro-phenyl)-l- cyclohexen-1-yl trifluoromethane-sulfonate was studied with the density functional theory (DFT). The geometries of the reactants, transition states, intermediates and products were optimized at the B3LYP/6-31 +G* level. Meanwhile, the single point energy of species involved in gas and solvent at B3LYP/6-31 I+G* level was individually investigated. Polarizable continuum models (PCM) were applied to the dioxane and water solutions at the same level, respectively. Results show that the rate-limiting step, M3→TS3, does not change in different solutions. However, the activation energy in a dioxane solution is lower than that in water, which explains the previous experimental results. Compared with the non-catalyzed reaction process, the activation energy of the rate- limiting step is reduced by 56.53 kJ mo1-1 in gas and 44.84 kJ mol-l in solvent, demonstrating a high catalytic efficiency of CuI.