Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic mo...Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic model is developed based on the cross-anisotropic elasticity model, which involves four parameters: bulk module, tangent Young's module, volume deformation coefficient and Poisson ratio. A parameter defined as virtual peak deviatoric stress dependent on state parameter is introduced into hyperbolic stress strain relationship to determine tangent Young's module. In addition, an existing fitting equation for isotropic compression curves and an existing dilatancy equation, which can consider the effect of state of sands, are employed to determine bulk module and volume deformation coefficient. Thirteen model constants are involved in the proposed model, the values of which are fixed for a sand over a wide range of initial void ratios and initial confining pressures. Well known experimental data for drained and undrained triaxial compression tests of Toyoura sand are successfully modeled.展开更多
研究了一类线性参数变化连续时间系统的稳定性、状态反馈镇定和滑模控制问题.通过引入适当加权矩阵变量寻找Le ibn iz-Newton公式各项之间的关系,从而直接地处理系统中的时滞状态项,避免了常规应用Le ibn iz-Newton公式进行模型变换的...研究了一类线性参数变化连续时间系统的稳定性、状态反馈镇定和滑模控制问题.通过引入适当加权矩阵变量寻找Le ibn iz-Newton公式各项之间的关系,从而直接地处理系统中的时滞状态项,避免了常规应用Le ibn iz-Newton公式进行模型变换的间接方法所带来的较大保守性.基于参数线性矩阵不等式方法提出了该类系统参数二次稳定的时滞相关的新条件.基于该条件研究了该类系统的状态反馈镇定和滑模控制问题.分别提出了镇定控制器设计条件和滑动模态存在条件,并设计了滑模控制器,保证了闭环系统的参数二次稳定.仿真实例证明了该设计方案的可行性.展开更多
基金Project(2010BC732101)supported by the National Basic Research Program of China
文摘Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic model is developed based on the cross-anisotropic elasticity model, which involves four parameters: bulk module, tangent Young's module, volume deformation coefficient and Poisson ratio. A parameter defined as virtual peak deviatoric stress dependent on state parameter is introduced into hyperbolic stress strain relationship to determine tangent Young's module. In addition, an existing fitting equation for isotropic compression curves and an existing dilatancy equation, which can consider the effect of state of sands, are employed to determine bulk module and volume deformation coefficient. Thirteen model constants are involved in the proposed model, the values of which are fixed for a sand over a wide range of initial void ratios and initial confining pressures. Well known experimental data for drained and undrained triaxial compression tests of Toyoura sand are successfully modeled.
文摘研究了一类线性参数变化连续时间系统的稳定性、状态反馈镇定和滑模控制问题.通过引入适当加权矩阵变量寻找Le ibn iz-Newton公式各项之间的关系,从而直接地处理系统中的时滞状态项,避免了常规应用Le ibn iz-Newton公式进行模型变换的间接方法所带来的较大保守性.基于参数线性矩阵不等式方法提出了该类系统参数二次稳定的时滞相关的新条件.基于该条件研究了该类系统的状态反馈镇定和滑模控制问题.分别提出了镇定控制器设计条件和滑动模态存在条件,并设计了滑模控制器,保证了闭环系统的参数二次稳定.仿真实例证明了该设计方案的可行性.